
8-bit
Microcntroller

Application
Note

Rev. 2532A–AVR–01/03
AVR243: Matrix Keyboard Decoder

Features
• 64-key Push-button Keyboard in 8 x 8 Matrix
• No External Components Required
• Wakes Up from Sleep Mode on Keypress
• Easily Implemented into Other Applications
• Low Power Consumption
• Software Contact Bounce Elimination
• Support for Alternate Function Keys, Easily Removable to Reduce Code Size
• Suitable for Any AVR® with a Minimum of 17 IO-lines and Pin Change Interrupt

(Currently Only ATmega162 and ATmega169)
• Can Be Modified for Other Devices, Using One Common Interrupt, See Application

Note “AVR240: 4 x 4 Keypad – Wake-up on Keypress”

Introduction
This application note describes a software driver interfacing an 8 x 8 keyboard. The
application is designed for low power battery operation. The AVR spends most of its
time in Power-down sleep mode, waking up when a key is pressed. The keyboard is
scanned, scancodes are processed and the AVR finally reenters sleep mode.

The application also supports user-defined alternation keys to implement Caps Lock,
Ctrl-, Shift- and Alt-like functionality. A test application implements a 4 x 4 keyboard
with one digit and three letters on each key. Alternation keys choose the keys’
functions.

Figure 1. Application

ATmega162

P
or

t C
P

or
t D

P
or

t A
U

A
R

T

1 2 3 Alt1

4 5 6 Alt2

7 8 9 Alt3

* 0 # Alt4

Status
LEDs

Terminal
1

The application is suitable for all applications using matrix keyboards, e.g., remote con-
trols, mobile phones and alarm and access systems. It is also easily upgradable using
the AVR’s In-System Programming capability or the Self-programming feature of the
ATmega devices. (See application notes “AVR910: In-System Programming” and
“AVR109: Self-programming”.) An example on using the Self-programming feature is a
general purpose re-programmable remote control.

The implementation described in this application note is using the ATmega162 device
as target. The code can, however, be used with the ATmega169 device with minor
modifications.

Theory of Operation The keyboard matrix is organized in 8 x 8 pushbuttons connected with row and column
lines as shown in Figure 2. A keypress connects the key’s row and column lines. When
pressing the top left key, the leftmost column line is connected to the topmost row line.

Figure 2. Keyboard Connection

Matrix keyboards can be scanned in several ways. When only single keys are pressed,
a quick method is to first select (drive low) all row lines and read the column result. Then
all column lines are selected, and the row result is read. Returned column and row is
combined into a unique scancode for the specific key pressed. This method is used in
this application note.

When simultaneous keypress capability is required, the method above cannot be used.
The rows must be scanned separately. The row lines must be selected (driven low)
sequentially, reading the column result for each row, thus getting all pressed keys. One
limitation is when keys are pressed in such a pattern that unwanted interconnections
appear. In Figure 3, the three highlighted keys pressed connect the row and column
lines in such a way that the X-marked key appears to be pressed too. Therefore, this
“ghost” key represents an error state.

ATmega162

P
or

t C
P

or
t D

Keyboard Matrix

Pin 0

Pin 7

Pin 0

Pin 7
2 AVR243
2532A–AVR–01/03

AVR243
Figure 3. Ghost Key as Result of Multiply Keys Pressed Simultaniously

To detect a keypress and wake-up from sleep mode, the pin change interrupt on the
AVR is used. Prior to entering sleep mode, all rows are selected (driven low), thus driv-
ing a column line low on any keypress in any row. (The result of a key will cause an
interrupt, but will decode as “No key pressed”.)

Due to the use of the pin change interrupt, only one key event is caught per key press.
Automatically repeating keys, by interrupt, are not possible with this implementation.
Repetition must be handled separately by the main application, by manually repeating
the key’s associated action until all keys are released.

Alternation Keys Many keyboard interfaces use secondary key functions. This can be implemented in
several ways. One common method is to dedicate a number of keys to be alternation
keys. When pressed simultaneously with ordinary keys, secondary scancodes are gen-
erated. It is also common to use sequential combinations, where an alternation key
pressed prior to an ordinary key generates secondary codes. This eliminates the need
to handle simultaneous key presses.

The alternation key(s) only applies to the first ordinary keypress after the alternation
key(s) has been activated. This type of alternation key is in this document referred to as
a “one-shot” alternation key.

It is also possible to implement the alternation keys as a toggle function, where the first
press on the alternation key enables the secondary mode, and the next disables it
again. The alternation applies to all keys pressed subsequently and is only terminated
by second press on the alternation key. This is used on ordinary PC keyboards’ Caps
Lock keys. This application uses a combination of both one-shot and lock-based alter-
nation keys.

By using sequential keys rather than simultaneous keys, the problem with ghost keys is
avoided. The application simply ignores all but the top left of the keys pressed.
3
2532A–AVR–01/03

Contact Bounce When a keyboard button is pressed, the contact bounces for some time before settling
in a steady on-state as illustrated in Figure 4. This must be handled in a way that won’t
generate multiple keypresses. One common way to do this is to wait a short while from
the keypress detection, letting the contact settle, and then read the actual state. This
also eliminates errors due to noise spikes on the lines. Alternatively, a hardware imple-
mented bounce eliminator or software digital filter can be applied. This application uses
the first method, simply waiting for the contact to settle, since it is the most inexpensive
and uses least power.

Figure 4. Contact Bounce

Implementation The following implementation uses the ATmega162 device. Guidelines on porting to the
ATmega169 device are listed on page 10.

The keyboard is connected to the AVR using two 8-bit IO ports. One port (Port D) is con-
figured as output and is connected to the row selection lines. One port (Port C) is
configured as input and is connected to the column return lines. See Figure 2 for details.
When scanning the keyboard matrix, the port currently used for output must be driven
low, while the input port must be internally pulled high, waiting to be driven low due to a
keypress.

This application’s test function also uses Pin 1 of Port E as a serial output for transmit-
ting the keypress information. See application note “AVR306: Using the AVR UART in
C” for details using the UART.

An ordinary keypress generates a scancode in the range 0 - 63 (8 output lines * 8 input
lines) even if not all rows and columns are used. Pressing an alternation key also gener-
ates ordinary scancodes, but in addition the alternation state flags are updated
accordingly. The state flags are contained in a global variable.

Three of the alternation keys are configured as lock keys, enabling secondary mode on
all following keys until pressed a second time. The lower four is one-shot, changing only
the next key’s function before the Flag is cleared automatically. See Figure 5 for more
details. When pressed, alternation keys also returns an ordinary scancode, allowing the
application to handle alternation keys as ordinary keys.

Another global variable is used to pass the scancode together with the alternation Flags
to the application. The six lower bits are used to indicate the code (0 - 63), while the
MSB (bit 15) indicates the update status. The keyboard driver sets the bit when a key is

Change
Detection

Value
Read

Delay
4 AVR243
2532A–AVR–01/03

AVR243
pressed. The application polls this bit and clears it when it has read the scancode. The
global byte and word are illustrated in Figure 5.

Figure 5. Extended Scancode

The keyboard software is implemented as an interrupt-controlled driver. The main appli-
cation enters sleep mode when waiting for keypresses. The keyboard driver wakes up
the AVR when a key is pressed, gets the scancode and updates the global bytes. The
main application has the responsibility of reentering sleep mode, since a SLEEP instruc-
tion inside an interrupt would halt the CPU.

Initialization and Main
Loop

The driver initialization and main loop routine is shown in Figure 6. The alternation Flags
and global variables are cleared and the ports are initialized according to the previous
description. Power-down sleep mode is selected, allowing the application to enter sleep
mode when no processing is required.

Figure 6. Initialization

X
Lock Keys

One-shot KeysMSB

1
MSB

X X
ScancodeAlternation Flags

X X

Global Scanword

Global State Flags Temporary Scancode

Row # Col #

START

Init Global
Variables and IO

Ports

Init Timer

Init Interrupts and
Select Power-down

Sleep Mode

SLEEP

Handle Keypress if
Anything Pressed

Your Other Code
Goes Here

Initialization

Main Loop
5
2532A–AVR–01/03

Keyboard Decoder Main
Loop

The driver’s main loop is executed on pin change interrupt. It first selects Idle sleep
mode, allowing the AVR to wake-up on Timer Overflow, since a Timer Overflow Interrupt
will not wake up the AVR from Power-down sleep mode. The timer is then set up to wait
a short while (5 ms typical) for the contacts to settle. During this delay, the main applica-
tion regains control and may enter sleep mode. When the delay is finished, the keypress
processing function is called. This completes the retrieval of a keypress. Finally, all row
lines are driven low and Power-down sleep mode is selected, allowing the main applica-
tion to enter sleep mode and wake up on next keypress. The flow chart for this loop is
shown in Figure 7.

Figure 7. Keyboard Decoder Main Loop

WAKE UP

Timer Delay

Process
Keypress

SLEEP

Select Idle
Sleep Mode

Select Power-
down Sleep Mode

Drive All Row
Lines Low
6 AVR243
2532A–AVR–01/03

AVR243
Keyboard Scanning
(Process Keypress)

The keyboard scanning process is illustrated in Figure 8. First the column result is
scanned. The three lower bits (column part) of the scancode is incremented until the low
column line is found. Then, the port directions are inverted and the row result is
scanned. The row part of the scancode is incremented until the low row bit is found.
Finally, the scancode processing function is called.

Figure 8. Keyboard Scanning

Process Keypress

Test Column Result

Any Columns
Low?

RETURN

Yes

No Initialize Temporary
Scancode

LSB of Column
Result Low?

Shift Column Result
Right 1 Bit

Increment Column
Part of Scancode

No

Yes

Invert Port
Directions

Drive All Column
Lines Low

Test Row Result

Any Rows Low?

RETURN

No

Yes

Set Original Port
Directions

LSB of Row
Result Low?

Shift Row Result
Right 1 Bit

Increment Row
Part of Scancode

No

Yes

Process
scancode

RETURN

Get Column Position

Get Row Position

Check Row Result

Check Column Result

Set Original Port
Directions
7
2532A–AVR–01/03

The scancode processing function first copies the generated scancode to the global
variable. Then the scancode is compared to the predefined alternation key codes,
updating alternation Flags accordingly. The flags are copied to the global variable. If the
key wasn’t an alternation key, the one-shot Flags are cleared. Finally, the update Flag is
set, indicating a new keypress has been received. The procedure is shown in Figure 9.

Figure 9. Scancode Processing

The Test Application
– myCellPhone

The source includes a simple test application that implements a cellphone-like key-
board. Resulting characters are transmitted using the USART. Using a 4 x 4 keypad, all
digits and letters are available using four alternation keys. The digit keys alone will
transmit digits. Three alternation keys are used to choose between the three letters on
each digit key, and finally a Caps-Lock key chooses between lowercase and uppercase.

Conversion tables are used to convert scancodes to characters, based on the current
alternation state. The scancode is used as an index into the tables. The scancode is
also a direct representation of the key’s position on an 8 x 8 keypad. The tables must
therefore have eight entries per row, even if the keypad only has four keys per row. If the
test application is modified to utilize larger keypads, it is, therefore, most size-efficient to
add columns and not rows to the keypad.

Process Scancode

Compare to
Alternation Codes
and Toggle Flags

RETURN

Copy Scancode to
Global Variable

Copy Alternation
Flags to Global

Variable

Set Update Flag in
Global Variable

Clear One-shot
Flags

Key is
Alternation

Key?

No

Yes
8 AVR243
2532A–AVR–01/03

AVR243
Code Size and
Timings

The code size for the keyboard matrix interface functions is shown in Table 1.

When running at 8 MHz on the ATmega162, the following execution timings in Table 2
were measured. It shows the sequence from wake-up on the first detected keypress, to
re-entering sleep mode after keypress processing.

When not in Power-down sleep mode the keyboard interface spends most of it’s time
waiting in Idle sleep mode. The device is in Active mode only 0.3 ms, which means
0.5%. The relative time spend in the differen modes is listed in Table 3.

Consider that a key is pressed every 10 minutes. This would give an average current
consumption of less than 2 µA.

Table 1. Keyboard Matrix Code Size

Function Code Size (Words) Description

key_init 25 Keyboard interface initialization

key_stop 7 Temporary stop the driver

key_get 15 Wait for a keypress

key_processAltKeys 88 Process the alternation keys and update flags
accordingly

pinChangeISR 24 Interrupt handler for pin change interrupt

Timer0OVFISR 107 Interrupt handler for timer overflow interrupt

Total 266

Table 2. Code Timings

Sequence Execution Time

Pin change wake-up -> Init timer -> Enter idle sleep 40 µs

Idle sleep -> Timer overflow 65,4 ms

Timer wake-up -> Keyboard scanning -> Enter Power-down sleep 351 µs

Total time not in Power-down sleep mode 65,7 ms

Table 3. Time Spend in Sleep/Active Mode

Mode of Operation Time

Active 0.5 % (15 mA)

Idle sleep 99.5 % (7 mA)

Power-down When waiting for a keypress (< 1 µA)
9
2532A–AVR–01/03

Porting
Considerations

The only difference from ATmega162 to ATmega169 affecting this application is the port
connected to the column lines of the matrix keyboard. ATmega162 uses Port C, while
Port B or E must be used on ATmega169. This is due to the Pin Change Interrupt pin
configuration. ATmega162 has Pin Change Interrupt capabilities on Port A and C, while
ATmega169 uses Port B and E for these interrupts. The application can easily be modi-
fied to use the other port capable of handling Pin Change Interrupts, if the default port’s
alternate capabilities are needed.

Also note that ATmega169 uses the SMCR Register instead of MCUCR for sleep mode
selection.

Porting this application to devices without Pin Change Interrupts requires the use of
external components and different interrupt usage. This is covered in application note
“AVR240: 4 x 4 Keypad – Wake-up on Keypress”. The rest of the scanning functionality
in this application needs no changes.
10 AVR243
2532A–AVR–01/03

 Printed on recycled paper.

© Atmel Corporation 2003.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

2532A–AVR–01/03 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	Theory of Operation
	Alternation Keys
	Contact Bounce

	Implementation
	Initialization and Main Loop
	Keyboard Decoder Main Loop
	Keyboard Scanning (Process Keypress)

	The Test Application – myCellPhone
	Code Size and Timings
	Porting Considerations

