Physics Formula Sheet

Mechanics

$x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2}$	$a_{c}=\frac{v^{2}}{r}$	$\left\|\vec{F}_{\text {spring }}\right\|=k\|\bar{x}\|$
$v=v_{0}+a t$	$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$	$P E_{\text {spring }}=\frac{1}{2} k x^{2}$
$v_{x}^{2}-v_{x 0}^{2}=2 a\left(x-x_{0}\right)$	$\omega=\omega_{0}+\alpha t$	$T_{\text {spring }}=2 \pi \sqrt{\frac{m}{k}}$
$\vec{a}=\frac{\sum \vec{F}}{m}=\frac{F_{\text {net }}^{-}}{m}$	$T=\frac{2 \pi}{\omega}=\frac{1}{f}$	$T_{\text {pendulum }}=2 \pi \sqrt{\frac{\ell}{g}}$
$\left\|\vec{F}_{\text {friction }}\right\| \leq \mu\left\|\vec{F}_{\text {Normal }}\right\|$	$v=f \lambda$	
$\overrightarrow{\mathrm{P}}=m \vec{v}$	$x=A \cos (2 \pi f t)$	$\left\|\vec{F}_{\text {gravity }}\right\|=G \frac{m_{1} m_{2}}{r^{2}}$
$\Delta \vec{p}=\vec{F} \Delta t$	$\vec{\alpha}=\frac{\sum \vec{\tau}}{I}=\frac{\vec{\tau}_{\text {net }}}{I}$	$\left\|\vec{F}_{\text {gravity }}\right\|=m \vec{g}$
$K E=\frac{1}{2} m v^{2}$	$\bar{\tau}=r \times F$	$P E_{\text {gravity }}=-G \frac{m_{1} m_{2}}{r}$
$\Delta P E=m g \Delta y$	$L=I \omega$	$\rho=\frac{m}{V}$
$\Delta E=W=F d \cos \theta$	$\Delta L=\tau \Delta t$	$K E=\frac{1}{2} I \omega^{2}$

Electricity
$\left|\vec{F}_{E}\right|=k\left|\frac{q_{1} q_{2}}{r^{2}}\right| \quad \Delta V=I R \quad R=\frac{\rho \ell}{A}$

$$
\mathrm{I}=\frac{\Delta \mathrm{q}}{\Delta \mathrm{t}} \quad \mathrm{P}=\mathrm{I} \Delta \mathrm{~V}
$$

$$
\mathrm{R}_{\text {series }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\ldots+\mathrm{R}_{\mathrm{n}} \quad \frac{1}{\mathrm{R}_{\text {Parallel }}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\ldots+\frac{1}{\mathrm{R}_{n}}
$$

Geometry

Rectangle $A=b h \quad$ Rectangular Solid $V=l w h \quad$ Triangle $A=\frac{1}{2} b h$
Circle

$$
\begin{aligned}
& A=\pi r^{2} \\
& C=2 \pi r
\end{aligned}
$$

Cylinder $V=\pi r^{2} \ell$
$S=2 \pi r \ell+2 \pi r^{2}$

$$
\begin{aligned}
\text { Sphere } & V=\frac{4}{3} \pi r^{3} \\
& S=4 \pi r^{2}
\end{aligned}
$$

Trigonometry

$c^{2}=a^{2}+b^{2} \quad \sin \theta=\frac{a}{c} \cos \theta=\frac{b}{c} \tan \theta=\frac{a}{b}$

θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	1	$\sqrt{3}$	∞

