
1 
 

      

 
Interfacing between Arduino UNO and  

24C512 EEPROM  using TWI Bus 

 
 

10.1 Interfacing 24C512 EEPROM with Arduino UNO using TWI Bus 

 

 

 
 
 

 

 

 

 

 
Figure-10.1: Pictorial View, Pin Diagram, and Pin Configuration (Google and Atmel data sheet) 

 

10.1.1  Introduction 

24C512 is a TWI Bus compatible serial EEPROM. It exchanges data with a host processor bit-by-

bit in a serial fashion. There are 65536 locations inside the memory chip; each location can hold 8-

bit data. The addresses of these memory locations are 0000h, 0001, …, FFFEH, FFFFh.  To write 

a data byte into a memory location, the following steps are executed: (a) the desired location is 

selected, (b) the previous content is erased, (c) data is placed, and (d) then the writing is completed 

within a self-timed scheme of about 5 ms. 

  

The chip can be operated from a 2.5V to 5V power supply (Pin-8); Pin-4 is the GND point. The 

device has a 7-bit TWI Bus address (called device address), and it is ‘1 0 1 0 0 A1 A0’. A1 and A0 

pins are usually connected with known logic values (LH or LL). Thus, by assigning different logic 

values to A1 and A0, we can simultaneously place four memory chips in the TWI Bus. 

 

WP (Write Protect) signal (Pin-7) protects the chip from being written when it is tied to Vcc; but, 

reading process remains allowed. When the WP-pin connected to GND-point, both the reading 

and writing processes remain active. 

    

The chip can communicate with a host microcontroller over the standard TWI Bus protocol. In 

TWI Bus, the SDA (Serial Data Line) line is used to exchange data between the MCU (the Master) 

and the EEPROM (the Slave). The SCL (Serial Clock Line) is used to carry the clock pulses that 

are needed to shift-in/shift-out data as needed between the Master and the Slave. SDA and SCL 

lines are open drain terminals, and they need have 2.2k/4.7k/10k pull-up terminations for wired-

AND logic operation in a multi-master and multi-slave TWI Bus System.  



2 
 

10.1.2  Control Byte 

Every EEPROM has its own identification code called Device Address or Slave Address. It is a 7-

bit data, and it is defined as 10100 A1 A0 for the 24C512 EEPROM. When the slave address is 

placed in an 8-bit packet, it occupies the upper 7-bit of the packet. The lower-bit of the 8-bit 

packet is occupied by another bit known as R-W/ (Read-write/) bit. Putting Logic-Low at R-W/ bit 

indicates that the data movement occurs from Master (ATmega328 MCU) to Slave (24C512 

EEPROM); whereas, putting Logic-H indicates data movement from Slave to Master.       

 

 

 

 

 

 

 

 

 

 
Figure-10.2: Control Byte Structure of 24C512 EEPROM in TWI Bus Operation (Microchip data sheet) 

 

10.1.3  TWI Bus Connection and Single Byte Data Write into an EEPROM Location 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

Figure-10.3: TWI Bus connection between Arduino UNO and 24C512 EEPROM 

(PC4)SDA SDA

(PC5)SCL SCL

Vcc

2x2k2

S1: Slave-1 (24C512 EEPROM)

PORTC

PC4

PC5

K1

K2

SDA

SCL

TWI Logic/Interface

M1: Master-1 (Arduino UNO)

0

1

0

1

0

0

1

MSB

LSB

Slave Address

A0

Vcc

GND

EEPROM

Adr Data

1234

FFFF

D0D7 ---

twiconx

A4

A5

APin-

8

5

6

Vcc

GND40V

1

A1 2

3NC

WP 7

TWCR
TWSR

TWDR
07

PINC

PINC4

PINC5

K3

TWI Logic/Interface

1
(V

s
s
)

2
(V

d
d
)

3
(V

A
)

4
(R

S
:C

-D
/)

5
(R

-W
/)

6
(E

:L
-H

-L
)

7
(D

0
)

8
(D

1
)

9
(D

2
)

1
0
(D

3
)

1
1
(D

4
)

1
2
(D

5
)

1
3
(D

6
)

1
4
(D

7
)

G
N

D

5
V

G
N

D

A
0

LCD (16x2)

G
N

D

A
1 NC

8 9 1
0

1
1

Dpin-

0000

00100011 (23)

8 18 28 28 28 (Write Status)

8 18 28 28 10 40 58 23 (Read Status)

3
k
3

SDA

SCL

27

28



3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure-10.4: TWI Bus Timing Diagram between Mater and Slave during device address inquiry 

 

10.1.3.1 TWI Bus Formation 
After power up reset, Pin-27 and Pin-28 (Fig-10.3) of the ATmega328 Microcontroller (MCU) are 

configured as digital IO lines (PC4, PC5) and get connected with PORTC/PINC logic. Pin-27 and 

Pin-28 become TWI Bus when LH is placed into the TWEN-bit of the TWCR Register of the 

MCU and get connected with TWI Logic. Now, Pin-27 becomes SDA line and Pin-28 becomes 

SCL line. SDA Line and SCL Line are respectfully connected with A4 and A5 pins of the edge 

connector of the Arduino UNO Board. When TWEN bit becomes active, both SDA and SCL lines 

assume H-states (Fig-10.4, BusEvent-U). The following registers of the ATmega328 are involved 

in the TWI Bus operation: 

 

 

 

 

 

 

 

 
Figure-10.5: TWI Bus Registers of ATmega328 Microcontroller 

 

10.1.3.2 TWI Bus Acquisition 
Before any data transmission occurs between Master and Slave using the TWI Bus, the bus Master 

needs to acquire the control of the bus and is done by bringing L-states on both the SDA and SCL 

lines (Fig-10.4, BusEvent-V). The BusEvent-V occurs when the user asserts START (Fig-10.4, 

BusEvent-S) condition on the bus by putting LH into the TWSTA bit of the TWCR Register.  

 

During START condition, the SDA line starts changing its state form High-to-Low (falling edge) 

while the SCL line is still at H-state. After a while, the SDA line assumes L-state and then the 

SCL line assumes L-state. If the START condition becomes a successful BusEvent-S, the upper 5-

bit of the TWSR Register will hold 00001 which means that the content of the TWSR Register 

will appear as 0x08 (the lower 3-bit of the TWSR Register are preserved and masked).   

TWCR

TWSR

TWDR

TWI Bus Control Register

TWI Bus Status Register

TWI Bus Data Register

TWBR

TWAR

07

TWI Bus Bit Rate Register TWBR7

TWI Bus (Slave) Address Register

TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0

TWINT TWEA TWSTA TWST0 TWWC TWEN ----- TWIE

TWS7 TWS6 TWS5 TWS4 TWS3 ----- TWPS1 TWPS0

TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0

TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

twireg

(U) (S)

START

Condition

SDA (PC4)

SCL (PC5)

1 2 3 4 5 6 7 8 9

1

00

1 (MSB)

0

1

0 0 0

ACKSlave Address: 1010010

(V)

R-W/

CLK-L

CLK-H

da
ta

 c
ha

ng
e

da
ta

 s
ta

bl
e

txtim

1-CLK t8
t9

(W)



4 
 

The SDA and SCL lines will take some finite amount of time to undergo a change from BusEvent-

U to BusEvent-V after the assertion of the START command. The end of the process could be 

detected by monitoring the TWINT bit of the TWCR Register. Initially, this bit is in the cleared 

condition (the TWINT bit can be cleared by writing LH into its own position), and it remains at 

this state until the process ends. At the end of the process, the TWINT bit assumes H-state which 

triggers the TWSR Register to hold 0x08. The execution of the following codes will bring the 

TWI Bus into BusEvent-V. Note that the Master does not generate any SCL pulses. 

 
LH  TWEN      //Pin-27 1nd Pin-28 are TWI Bus 

LH  TWINT     //Clearing the TWINT bit 

LH  TWSTA     //asserting START command 

 

The prioritized actions of the above three lines could be achieved by the following single line:  
TWCR = 0b10100100;        //TWI Bus is formed first; TWINT gets cleared and then START 
while (bitRead(TWCR, 7) != HIGH) //checking if process is ended 
      ;        //wait until the process is completed 
lcd.((TWSR & 0b11111000), HEX); //LCD Monitor should show a status word of 0x08 

 

10.1.3.3 Detecting the Presence of EEPROM in the TWI Bus 

A practical TWI Bus may contain more than one device: (a) EEPROM with device address 

1010010, (b) DS1307 with device address 1101000, and (c) BMP85 with device address 1110111. 

A particular device such as EEPROM, in this case, is detected by the following events: 

(a)  Master wishes to write a data byte (say, 0x23) at EEPROM location 0x1234. So, the data 

direction is from Master to Slave, and accordingly the R-W/ bit of the control byte will be 

1010010 0 (deviceaddress, R-W/). 

(b) Master puts the control byte on the TWI Bus via TWDR Register (Fig-10.4, BusEvent-W). 

(c) Master pulls the TWINT bit of the TWCR Register to check that the process has ended. 

While pulling this bit, the 8 SCL pulses are automatically generated by the Master to shift 

out the bits of the control byte. 

(d) At the end of 8
th

 SCL pulse (Fig-10.4), the Master releases the SDA line which 

immediately assumes H-state by virtue of pull-up resistor.  

(e) The address (upper 7-bit of the control byte) bits are matched with the address of the 

EEPROM; the EEPROM accepts the address, and in recognition the EEPROM generates 

the ACK signal (Fig-10.4) by pulling down the SDA line.  

(f) To sample the ACK signal, the Master generates the 9
th

 SCL pulse (Fig-10.4). The ACK 

signal triggers the generation of the appropriate status word into the TWSR Register. 

(g) EEPROM is ready to accept next data byte; correct status word (0x18) in the TWSR.  

 

All the above events could be generated by executing the following codes: 
TWDR = 0b10100100;   //deviceaddress + 0 = SLA + W = Slave Address in Write Mode 
TWCR = 0b10000100;        //TWI Bus remains enabled; TWINT gets cleared; START bit is OFF 
while (bitRead(TWCR, 7) != HIGH) //checking if process is ended 
      ;        //wait until the process is completed 
lcd.((TWSR & 0b11111000), HEX); //LCD Monitor should show a status word of 0x18 

 

10.1.3.4 Setting Address Counter of EEPROM 

 The Master wants to store an 8-bit data (0x23) into location 0x1234 of the EEPROM. The address 

is to be deposited first into the Address Counter of the EEPROM. This is done by executing the 



5 
 

following instructions where higher byte (0x12) of the address is deposited first. The bus timing 

diagrams are shown in Fig-10.6 and Fig-10.7. 

 
TWDR = 0x12;     //higher byte of the address 

TWCR = 0b10000100;        //TWI Bus remains enabled; TWINT gets cleared; START bit is OFF 
while (bitRead(TWCR, 7) != HIGH) //checking if process is ended 
      ;        //wait until the process is completed 
lcd.((TWSR & 0b11111000), HEX); //LCD Monitor should show a status word of 0x28 
//---------------------------------------------------------------------------------- 
TWDR = 0x34;     //lower byte of the address 
TWCR = 0b10000100;        //TWI Bus remains enabled; TWINT gets cleared; START bit is OFF 
while (bitRead(TWCR, 7) != HIGH) //checking if process is ended 
      ;        //wait until the process is completed 
lcd.((TWSR & 0b11111000), HEX); //LCD Monitor should show a status word of 0x28 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure-10.6: TWI Bus timing diagram for setting upper byte of the address in the Address Counter 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-10.7: TWI Bus timing diagram for setting lower byte of the address in the Address Counter 

  SDA (PC4)

SCL (PC5)

1 2 3 4 5 6 7 8 9

0 100 0 0 1

0 0

1

ACKEPROM Address: 12 (0001 0010 higher Byte)

(D)

txtim

  SDA (PC4)

SCL (PC5)

1 2 3 4 5 6 7 8 9

1 100 0 1 0 0

0

ACKEPROM Address: 34 (0011 0100 lower Byte)

(E)

txtim



6 
 

10.1.3.5 Putting 8-bit Data into EEPROM Location Pointed by Address Counter 

The following instructions are executed to put 0x23 into the EEPROM location pointed by the 

Address Counter: 

 
TWDR = 0x23;     //data byte 
TWCR = 0b10000100;        //TWI Bus remains enabled; TWINT gets cleared; START bit is OFF 
while (bitRead(TWCR, 7) != HIGH) //checking if process is ended 
      ;        //wait until the process is completed 

lcd.((TWSR & 0b11111000), HEX); //LCD Monitor should show a status word of 0x28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure-10.8: TWI Bus timing diagram for the transmission of data byte into EEROM 

 

10.1.3.6 Data Byte actually getting written into EEPROM Location 

The EEPROM location has received the data byte. The data byte gets written into the location in 

one of the following ways: 

(a)  Assert STOP command (Fig-10.8, BusEvent-P) on the TWI Bus to free the bus and to free 

the EEPROM. Once freed, the EEPROM starts a self-timed ‘data write logic’ which takes 

about 5 ms to complete the write operation. The following codes could be executed: 

   
TWCR = 0b10010100;      //TWI Bus remains enabled; TWINT gets cleared; STOP command 
while (bitRead(TWCR, 7) != HIGH) //checking if process is ended; hangs up in loop 

        ;       //wait until the process is completed 
lcd.((TWSR & 0b11111000), HEX); //LCD Monitor shows: 0xF8 without while() loop 
delay (5);     //wait for about 5 ms to complete the write operation 

 

 STOP command is issued with LH at the TWSTO bit of the TWCR Register. The SDA line 

makes a transition from LL to LH state while the SCL line is at H-state (Fig-10.8, 

BusEvent-P).  

 

(b)  Assert STOP command on the TWI Bus to free the bus and to free the EEPROM. Once 

freed, the EEPROM starts a self-timed ‘data write logic’ which takes about 5 ms to 

complete the write operation. During this time, the EEPROM will not respond to any TWI 

Bus command that involves its deviceaddress inquiry in the read mode (R-W/ bit of the 

  SDA (PC4)

SCL (PC5)

1 2 3 4 5 6 7 8 9

1 000 0 0 1 1

0

ACKData for EPROM : 23 (0010 0011 Data Byte)

(Y)

txtim2D

(P)

SDA

SCL



7 
 

control byte should be at LH). The execution of the underneath Flow Chart allows a user to 

detect the end of ‘data write cycle’.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-10.8: Flow Chart describing the mechanism of detecting ‘end of write’ by polling status code 

 

 The following codes could be executed in lieu of the Flow Chart of Fig-10.8:  
   //--- wait until data get written into EEPROM location----------------------------- 
     do 

     { 
         TWCR = 0b10100100; //TWINT TWEA TWSTA TWSTO TWCC TWEN X TWIE  //START command 
         while (bitRead(TWCR, 7) != HIGH) 
          ; 
         TWDR = 0b10100101;    //SLA + R     //Read Mode works; write mode do not work! 
         TWCR = 0b10000100;  //Needed to generate 9 clock pulses on SCL line 
         while (bitRead(TWCR, 7) != HIGH) 
          ; 
     } 
 

while ((TWSR & 0b11111000) != 0x40);  //correct status code  
TWCR = 0b10010100;   //STOP command 

     //--------------------------------------------------------------------------------- 
 

10.1.4   Single Byte Data Read from an EEPROM Location 

In Section-10.1.3, we have written 1-byte data (0x23) into EEPROM location 0x1234. We wish to 

read it back and show on the LCD of Fig-10.3. The procedures are: 

(1)  Acquire Bus control by asserting START command and checking the status code (0x08).  

(2) Make link with EEPROM in Write Mode (R-W/ bit = LL) by sending the device address. 

Why is it Write Mode? After establishing link with the EEPROM, the user is going to write 

location address (0x1234) into the Address Counter of the EEPROM. The data movement 

direction is from the Master to the Slave. Therefore, the R-W/ bit must be set at LL.  

(3) Assert upper byte (0x12) of the address on the TWI Bus. 

(4) Assert lower byte (0x34) of the address on the TWI Bus. 

Entry

L1:

L4:

pollWriteEnd

N

Assert START 
command

L2:

Assert device address 
in Read Mode

Write complete
Assert STOP command

L3:

Status code 40
?

Exit

Y

L5:



8 
 

(5) Now it is time to read data session from Slave to Master. The data movement direction 

must be changed by sending the device address in Read Mode (R-W/ bit = LH). How can 

we accomplish this task? Should we STOP the bus, and then acquire the bus and then set 

the Read Mode? If we STOP the bus, the bus will become free; some other device (Master-

2) might seize the bus, and we will not be able to get it until it is released by Master-2. So, 

we will not go in STOPing the bus; rather, we will issue REPEATED START command 

which will allow us establishing link with EEPROM in Read Mode without losing the 

control of the bus.  REPEATED START command is same as the normal START 

command, and it is asserted by putting LH at the TWSTA bit of the TWCR Register. 

(6) Assert (REPEATED) START command on TWI bus and check the status code for 0x10. 

(7) Now, we have to generate 9 (8+1) clock pulses on the SCL line to bring out 8-bit data (MS-

bit first) from the memory location (0x1234) and stores the data into the TWDR Register of 

the Master.  The 9
th

 clock pulse will be required to sample the ACK (or NACK) signal 

which will now be generated by the Master (because it is the receiver). The ACK signal is 

used to advance the Address Counter of the EEPROM in order to read the data of the next 

location (0x1235). The ACK signal also generates known status code (0x50) which 

prompts the TWI Logic of the Master to generate next set of clock pulses for reading data 

of the next memory location. The master will generate ACK signal (pulling down the SDA 

line and then release it during 9
th

 clock pulse) if the TWEA bit of the TWCR Register has 

already been enabled. Advancing the Address Counter of the EEPROM will be a justified 

action if the Master knows that there is a data it has to read, and accordingly the Master 

will assert next set of clock pulses on the SCL line.  

 

In the present case, we have 1-byte data to read from location 0x1234. After reading this 

data byte, the Master must not generate ACK signal to advance the Address Counter. How 

do we do it? Generation of ACK signal will be prohibited (equivalent of the generation of 

NACK signal) if the TWEA bit is made inactive (disabled). NACK signal does not advance 

the Address Counter of the EEPROM; it generates known status code (0x58) which 

prevents the TWI Logic of the Master from generating the next set of clock pulses. The 

following codes could be executed to generate ACK and NACK signals as needed: 
 

(a) Reading 2-byte data from Location 0x1234 and 0x1235 
TWCR = 0b11000100;  //TWI remains enabled; TWINT is cleared; TWEA active 
while(bitRead(TWCR, 7) !=HIGH) //9 (8+1) clock pulses are being generated 
       ; 

dataReceive[0] = TWDR;  //data of location 0x1234 is received via TWDR 
lcd.print((TWSR & 0xF8); //status code 0x50; Address Counter advances at 0x1235 
//------------------------------------------------------------------------- 
TWCR = 0b10000100; //TWI remains enabled; TWINT cleared; TWEA disabled for NACK 
while(bitRead(TWCR, 7) !=HIGH) //9 (8+1) clock pulses are being generated 
       ;        //wait until process ends 
dataReceive[1] = TWDR;  //data of location 0x1235 is received via TWDR 
lcd.print((TWSR & 0xF8; //status code 0x58; Address Counter remains at 0x1235 
 

(b) Reading 1-byte data from Location 0x1234  
TWCR = 0b10000100; //TWI remains enabled; TWINT cleared; TWEA disabled for NACK 
while(bitRead(TWCR, 7) !=HIGH) //9 (8+1) clock pulses are being generated 
       ; 

dataReceive[0] = TWDR;  //data of location 0x1234 is received via TWDR 
lcd.print((TWSR & 0xF8); //status code 0x58; Address Counter remains at 0x1234 



9 
 

10.1.5  Multibyte Write/Read between UNO and 24C512 EEPROM using TWI Bus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
             Figure-10.8: Data write algorithm                                    Figure-10.9: Data read algorithm 

 
#include <Wire.h> 
#define MAX 32  //32 bytes to Write/Read as Wire.requestFrom() supports only 32 byte 
Byte wrArray[MAX]; //Array holds some known data that will be written into EEPROM 
byte rdArray[MAX]; //Array holds data after reading from EEPROM 
unsigned int locaddress = 0x1000; //EEPROM base address 
 
void setup()  

{ 
  Serial.begin(9600); 

Entry

L1:

L4:

L5:

pageWriteEE

all bytes buffered
?

N

Y

Initialize as needed

Exit

L2:

Assert START command

Queue the EEPROM 
base address in buffer

L3:

Queue all data bytes in 
buffer

Assert STOP command

Poll ACK of EEPROM 
to sense end of Write 

ACK found
?

N

Y

L7:

L8: Write done

Assert START 
command

Transmit deviceaddress 
in Read Mode

Bus Acquisition

Data Buffering

Bus Release

ACK Polling to
Detect Ending 
of Write Cycle

Transmit base address 
and all data bytes

Address and 
Data Transmit

L6:

Entry

L1:

L4:

L5:

pageWriteEE

all bytes buffered
?

N

Y

Initialize as needed

Exit

L2:

Assert START command

Transmit EEPROM 
Base Address

L3:

Queue all received data 
bytes in buffer

Assert STOP command

L7:

L8:

Bus Acquisition

Data Receive 
and Buffering

Bus Release

Process and 
Display Data

recArray[i] = Wire.read()

Remove data from 
Queue into 
Known Buffer

Process and 
Display Data

L6:



10 
 

  Wire.begin(); 
  pinMode(13, OUTPUT); //DPin-13 drives built-in LED (L) of Arduino UNO 

   
  for (int i = 0; i<MAX; i++)  //loading known data 0, ɨ, …, ɨF into wrArray[ɪɩ] 
  { 
    wrArray[i] = i; 
  } 
 
  wrEEPROM();   //calling user defined function to write 32 byte data into EEPROM 

  rdEEPROM();   //calling user defined function to read 32 byte data from EEPROM 
   
  for (int k = 0; k<MAX; k++)  //showing data on the Serial Monitor (Write-Read-Display) 
  { 
    Serial.print(rdArray[k], HEX); 
  } 
} 

 
void loop()  
{ 
  digitalWrite(13, !digitalRead(13)); //blinking L at 2-sec interval 
  delay(2000); 
} 
 
void wrEEPROM() 
{ 
  locaddress = 0x1000;      //EEPROM base address 

   
  Wire.beginTransmission(0b1010010); //EEPROM deviceaddress; START command 
  Wire.write(highByte(locaddress));  //base address (upper byte) is queued in buffer 

  Wire.write(lowByte(locaddress));  //base address (lower byte) is queued in buffer 
    
  for (int n = 0; n<MAX; n++, locaddress++) //data bytes are queued in buffer 
  { 
    Wire.write(wrArray[n]); 
  } 
  Wire.endTransmission(); //Address/data bytes are transmitted to EEPROM; STOP command 

 
do       //poll ACK signal to detect end of Write Cycle     
{ 
 Wire.beginTransmission(0b1010010);   //START command; device address + Write Mode 
 Wire.write(0x00); 
} 

while((Wire.endTransmission()) !=0x00);  //status code 0x00 indicates success 
//---alternate codes for the above do-while 
do 
{ 
   TWCR = 0b10100100; //TWINT TWEA TWSTA TWSTO TWCC TWEN X TWIE 
   while (bitRead(TWCR, 7) != HIGH) 
      ; 
   TWDR = 0b10100101;   //SLA + Read     //Write Mode does not work! 
   TWCR = 0b10000100; 
   while (bitRead(TWCR, 7) != HIGH) 
     ; 
} 
while ((TWSR & 0b11111000) != 0x40); //expected status code in Read Mode 

//--------------------------------- 
 } 



11 
 

void rdEEPROM()     //reading data from EEPROM 
{ 

  locaddress = 0x1000;   //EEPROM base address 
   
  Wire.beginTransmission(0b1010010); //STATRT command and address queue 
  Wire.write(highByte(locaddress)); 
  Wire.write(lowByte(locaddress)); 
  Wire.endTransmission();     //Transmit and STOP command 
   

   
  Wire.requestFrom(0b1010010, MAX);  //loop until data read complete from EEPROM 
  byte x = Wire.available();    //number of data bytes received from EEPROM 
  for (int j = 0; j<x; j++)    //moving data from queue to known rdArray[32] 
  { 
    rdArray[j] = Wire.read(); 
  } 

   
} 
 

 

10.10   Problems and Solutions 
1 Write down the procedures for writing 1-byte data into any location (say, 0x1234) of the 24C512 

EEPROM. 

 (a)  Assert START command and check for the generation of status code 0x08 

 (b)  Assert SLA + W/ (0b10100100) and check for status code 0x18  

 (c)  Assert upper byte of address (0x12) and check for status code 0x28 

 (d)  Assert lower byte of address (0x34) and check for status code 0x28 

 (e)  Assert data byte (say, 0x23) and check for status code 0x28 

 (f)  Assert STOP command and no check for any status code 

            (g) Allow 5 ms time for the data byte to get written into the EPROM. Alternatively, poll ACK 

signal (status code 0x40) to detect the end of ‘write cycle’. The EEPROM remains 

disconnected from TWI Bus as long as the write cycle is active. The polling codes: 
    //--- wait until data get written into EEPROM location---------------------- 
        do 
        { 

TWCR = 0b10100100;       //START command 
           while (bitRead(TWCR, 7) != HIGH) 
            ; 

TWDR = 0b10100101;    //SLA + R   //Read Mode works; write mode do not 
work! 

           TWCR = 0b10000100;      //Needed to generate 9 clock pulses  
           while (bitRead(TWCR, 7) != HIGH) 
            ; 
        } 
 

while ((TWSR & 0b11111000) != 0x40);  //status code when ACK is received 
TWCR = 0b10010100;       //STOP command 

        //-------------------------------------------------------------------------- 

 

 

 

 

 


