
Programming Aloft and Below

Robert Swan

Copyright c© 2019 by Robert Swan. All rights reserved.

Contents

1 Introduction 5

1.1 First Program. What Else: Blinky! . 8

1.2 Programming . 9

2 Roll of the Dice 11

2.1 Bits and Bytes . 11

2.2 Binary, Hexadecimal and Decimal . 12

2.3 Blinky Revisited . 14

2.4 Counting In Binary . 15

2.5 Cylon . 16

2.6 Make Some Noise . 17

2.7 Using Button Input . 19

3 Memories 23

3.1 Stepper Motor . 23

3.2 Palindrome . 28

3.3 Dealing With Text . 30

3.4 A Different LED Output . 35

3.5 Hard Maths . 37

3.6 Taking Steps . 42

3.7 Another Mystery Solved . 44

3.8 For Your Memory . 45

4 War of the Worlds 47

4.1 Pulse Width Modulation – PWM . 47

4.2 PWM Hardware . 49

4.3 Non-PWM output . 53

4.4 Analog to Digital . 54

5 A Worked Example:Morse Code 57

5.1 Morse Code . 57

1

2 CONTENTS

5.2 Dots and Dashes . 58

5.3 ASCII to Morse . 60

5.4 User Interface . 62

5.5 Loose Ends . 64

5.6 Conclusion . 65

6 Exploring the Arduino Hardware 69

6.1 SPI . 69

6.2 I2C . 72

6.3 EEPROM . 75

6.4 Flash . 76

7 The Road Ahead 77

7.1 Omissions . 77

7.2 A Crossroads . 81

A ThinkerShield Schematic 97

B Binary Operations 99

B.1 Addition . 99

B.2 Subtraction . 101

B.3 Multiplication . 103

B.4 Division . 104

B.5 Logical Operations: AND, OR, XOR . 106

B.6 Floating Point . 106

B.7 Binary Coded Decimal . 107

C ArdEx Command Reference 109

D ArdEx Instruction Set Reference 113

D.1 Addressing Modes . 113

D.2 Instruction Set . 115

D.3 Instruction Set Summary . 119

E Blinky for the ATmega328/P 121

F ASCII Encoding 123

Preface

(For people who already know about programming)

I’m mad. Obviously.

It can be the only explanation. Do I really think beginners are going to be able to

cope with an assembly language when many beginners already fail to get anywhere

with a colourful and friendly graphical IDE?

Well... yes, I do.

Let me explain what led up to my creating ArdEx and writing this book.

At dinner with a friend and former colleague, now a high school teacher, conversa-

tion turned to a task she had recently been set: to come up with a course in robotics

for the next year. The school had already bought hundreds of Arduino UNOs and it

was thought she might use these in the course. She gave me a couple of the Arduinos

to try, to see if I had any suggestions.

I had been dabbling with hardware for a fair while, but had never used an Arduino.

I tried a few sketches. Easy enough, but the friendly environment shielded the user

from nearly everything. Almost a paradox that here you are with the hardware in

your hand, but all your contact with it is through other people’s work.

Compounding this was that the bulk of the work happened on the PC. You edited

and compiled the code there and only transferred it to the Arduino at the last step.

If you wanted to change anything it was back to the PC editor. How do you explain

to your students that they’re working on Arduinos when it’s obvious they’re working

on PCs?

I looked around at various ways to make the environment less numbing. Tried a

couple of flavours of Forth (weirder than usual) and found a program called Bitlash

that wasn’t too wide of the mark. Still not really what I was looking for.

Why not write my own friendly command shell talking to the hardware directly?

Good question. Ok, but what exactly to write?

After a few days with this in the back of my mind, I was thinking wistfully of my

first home computer, the venerable TRS-80. Unlike the card-eating monster I had

been using at uni, the TRS-80 powered up to a cheery Ready> prompt, all set for

interactive BASIC. A few minutes after getting it home I had written my first pro-

gram:

10 PRINT "HELLO"

20 GOTO 10

Typed RUN and away it went. That’s the sort of experience I was looking for. Immedi-

ate. But BASIC wasn’t the answer. TRS-80 BASIC had PEEK and POKE commands,

3

4 CONTENTS

and that’s about as far as its exposure of hardware went.

That’s when I asked “Why not an interpretive assembly language?”. Heresy, of

course, but why not? The parser would be pretty easy, and so would the execu-

tion loop. I invented a suitable language (based approximately on the TI MSP430’s)

and wrote an Arduino sketch to interpret that language. It made all the Atmel

ATmega328/P I/O registers accessible at their true addresses and, very soon, I was

typing in my first interactive assembly language program ever.

Yes, the blinking LED, but I went on experimenting, consulting the Atmel manual

and exploring its hardware. It was surprisingly reminiscent of the old TRS-80 times.

You know, fun.

My friend has tried it for herself, and with a few of her students. They typed away

at MOV and BIS and JMP instructions and gave every impression of enjoying them-

selves. The idea might have some promise.

I’m sure this approach won’t be for everyone. I am not a teacher, but my impression

is that different people learn in different ways. I have aimed this book, albeit a few

decades late, at my 14 year old self. It takes the “get your hands dirty” approach

to learning, which has always worked well for me. It is not a collection of facts and

figures to commit to memory, nor is it a clinical presentation of theory. This is less

a computer geography text, more a travel guide, pointing out interesting areas to

explore.

If that appeals to you, bon voyage.

Chapter 1

Introduction

Admiral Nelson, Captain Cook and other famous naval commanders started their

careers as ordinary sailors and rose through the ranks to command. One reason

they commanded so well was their earlier experience up in the rigging and down

belowdecks; they knew how to get the best out of both crew and ship.

This book aims to give some comparable experience to a programmer on the path

to being a “great commander” by showing what computer software really does at its

lowest level.

It might seem a stretch to liken today’s computer programmer to a naval comman-

der, but on at least one point the two are alike: on board, the captain’s rule was

absolute; in the computer, what the programmer commands, the computer carries

out to the letter.

Indeed it is even more important that the programmer give sensible commands.

There were limits to a captain’s absolute authority. If he ordered his entire crew to

jump overboard without good reason, he would have faced a mutiny. A program-

mer’s instructions are always dutifully obeyed, no matter how silly they might be.

A programmer with experience in “thinking like a computer” is less likely to write

foolish programs.

The only langauge a computer handles directly is machine language. It is made up

of electrical patterns of 1s and 0s. Consider it the “spoken form”. This book uses the

written equivalent: assembly language.

Many smart people think assembly language a subject to avoid. It is widely consid-

ered obscure and difficult, but it is neither. What it is, is primitive. Like a stereo-

typical caveman (or a toddler), you have to put your more sophisticated thoughts in

very simple terms. This process clarifies thinking which is exactly why it should be

one of a programmer’s first languages.

Assembly language is also condemned because it is not portable; you learn it for this

machine, you have to learn it again for that machine. Correct, in a hair-splitting

way, but it misses the point. In a car, the windscreen wiper control can be in various

places, but the steering wheel and pedals are much the same in all cars. In the

same way, the crucial elements are common to all assembly languages. Learn these

elements and you have a good understanding how computers work. That is the

point.

5

6 CHAPTER 1. INTRODUCTION

Intended Audience

Anybody interested in how computers work and how to put them to work.

This book presents ideas which, it is hoped, will make youe think. You should come

away with a good feel for what the basic elements of a computer are, and how to

make use of them to solve problems.

The book is intended to be instructive and conversational, trying to take some of the

mystery out of computer programming. It is not a textbook, but might be used to

supplement a course.

People with more programming experience will be able to cover the material more

quickly, but people with no programming experience should be able to cope with it

all too, and come away with a pretty good picture of what computers really do.

As for age, a smart ten year old should be able to understand most of it, but some of

the material in Chapter 7 and Appendix B is quite esoteric.

How To Read This Book

Plan to work at it. While writing this book hasn’t been easy, getting the most out

of it will take a fair effort on your part. Mind you, it should be a fun effort. If it

becomes drudgery, this approach is probably not for you.

Skim through the appendices before you start. There is material there that can

be referred to as needed. The Command and Instruction References are short, but

should be leafed through from time to time to get the most out of ArdEx.

It is probably best to work through the chapters in order. The book is short, but the

ideas are fairly densely packed and there isn’t much repetition. You don’t want to

miss anything on the way through. It would be reasonable to read each section from

beginning to end, then reread it, pausing this time to load each example into ArdEx.

Take your time trying each example out. Experiment. Tweak delays and other in-

structions to really understand how the program works. Use the S and SS commands

to run the program step by step.

Try the exercises, but bear in mind that they are just a starting point. Come up with

your own ideas to modify the example code. Do that a few times and you’ll soon be

ready to write your own ArdEx programs from scratch.

Hardware

You’ll need an Arduino UNO with ArdEx installed. The Arduino environment shields

you from the specifics of the hardware, making one Arduino much the same as an-

other. However, ArdEx bypasses the Arduino environment, accessing the hardware

directly. Consequently, ArdEx is only sure to work properly with an Arduino UNO

(i.e. one based on an Atmel ATmega328/P microcontroller).

Many of the programs were developed with the ThinkerShield board installed. This

board was developed for and sold by the N.S.W. Museum of Applied Arts and Sci-

ences. It includes six LEDs, a button, a buzzer a potentiometer and a photoresistor

and is an open hardware project published on GitHub. The ThinkerShield is a con-

venient companion to this book, but is not essential. The same programs can work

7

by connecting the Arduino to the appropriate parts on a breadboard instead.

The ThinkerShield schematic is included in Appendix A.

Stepper motor TODO

7-segment LED TODO

74HC595 DIP 16 chip TODO

MCP9808 module TODO

resistors and breadboard TODO

Software

Loading the ArdEx software onto the Arduino.

Software for your computer

• Windows PC TODO

• Apple Mac TODO

• Linux TODO

8 CHAPTER 1. INTRODUCTION

1.1 First Program. What Else: Blinky!

Before getting into the details of programming, it is worth making sure that your

equipment is working correctly. When trying out a new computer or language, the

usual first program would print ”Hello”, or ”Hello, World!!” or such like. The equiv-

alent for today’s microcontroller gadgets is to blink an LED.

Here is one way to do it with ArdEx:

0 MOV #0x20,DDRB

1 XOR #0x20,PORTB

2 WAIT 5000

3 JMP 1

Example 1.1: Blink LED

Type in the lines∗ as shown (including the ”step number” in the left column), then

type RUN<Enter>. The LED will blink repeatedly: on for half a second, off for half

a second. When you have seen enough press <Ctrl>-C and the ArdEx prompt will

come up.

For now, don’t worry about what exactly is happening in the first line. The second

line toggles the LED – if it’s on, it turns it off; if it’s off, it turns it on. Again, don’t

worry too much for now exactly how that’s happening. The third line simply pauses

for an interval counted in tenths of milliseconds; 5000 here is half a second. The

fourth line jumps back to the second. And it repeats these few instructions until you

interrupt it with <Ctrl>-C.

Try changing the delay. Just retype step 2 with a different interval, say 1000, and

type RUN again. Now it blinks 5 times per second.

Before going on, a few notes on the ArdEx environment. The three columns are

called the step number, the opcode and the argument(s). The opcode and arguments

together are the instruction. The step number is a value between 0 and 255, each

representing a place where an instruction can be stored.

ArdEx allows you to include a comment after the arguments. Anything following a

‘;’ (semicolon) will be discarded. Indeed, if you type a semicolon, nothing more will

appear on the screen until you hit <Enter>. Comments are intended to be used in

files stored and edited on the computer before transferring to ArdEx.

You can start a program at any step number by putting that after the RUN command,

e.g. RUN 3 will start running at step 3.

After interrupting a program with <Ctrl>-C you can run it one step at a time using

the S command. Just keep typing S<Enter> and you’ll see that the XOR instruction

is the one that toggles the LED.

You can list the instructions stored in steps using the LIST command. Typing LIST

0,9 will show you the instructions stored in the first ten steps.

If you don’t include a step number before an instruction, the instruction is executed

immediately. If you type:

XOR #0x20,PORTB

∗you don’t have to line things up perfectly; as long as you have a space or tab between columns will be

fine

1.2. PROGRAMMING 9

The LED will toggle as soon as you press <Enter>.

Look at Appendix C for the complete list of commands. They may not make much

sense if this is all new to you.

Here’s another version of ”Blinky”:

0 MOV #0x20,DDRB

1 BIS #0x20,PORTB

2 WAIT 5000

3 BIC #0x20,PORTB

4 WAIT 5000

5 JMP 1

Example 1.2: Less symmetrical LED blinking

Here, the BIS instruction turns the LED on (”sets” it) and BIC turns it off (”clears”

it). Now you can experiment with the two different WAIT intervals so the time spent

on can be very different from the time spent off.

Blinky isn’t the most exciting program in the world, but here are some things to try

out and think about.

Exercises 1.1

1. The human eye can’t detect flicker if something is turned on and off rapidly

enough. Try testing your threshold by experimenting with the WAIT intervals.

Which WAIT instruction determines how long the LED is off? Most people see

flicker at an off period of 1/50th of a second, but not if the off period is 1/100th

of a second or less. Where are you on the scale?

2. With the second example, hold the off period short enough that you can’t see

any flicker. Now vary the on period from about half that to about 5 times the

off period. What do you notice about the LED?

1.2 Programming

Though it might seem trivial, there is a world of difference between the commands:

XOR #0x20,PORTB

and

1 XOR #0x20,PORTB

In the first command, you are executing an instruction, immediately toggling a bit

in PORTB. In the second command, you are storing that instruction for future use.

PORTB isn’t affected at all until the program is run. The first command is “playing

with a light switch”, the second is programming a computer to play with a light

switch.

That is the final product of computer programming: a set of instructions to be carried

out later on. The computer is wrapped around the very simple idea of repeating:

