

Introduction to

LIN
(Local Interconnect Network)

Stéphane REY
Revision 1.0 - May 13th, 2003

Table of content

1 INTRODUCTION ...3

1.1 PURPOSE OF THE DOCUMENT...3
1.2 ACRONYMOUS ...3
1.3 RELATED DOCUMENTS ..3
1.4 REFERENCE DOCUMENTS ..3

2 OVERVIEW ...4
2.1 INTRODUCTION ..4
2.2 MAIN FEATURES ...4
2.3 TOPOLOGY ...5
2.4 EXAMPLE OF LIN IMPLEMENTATION ...6
2.5 LIN ADVANTAGES...6

3 PROTOCOL..7
3.1 STRUCTURE OF A MESSAGE ...7

3.1.1 Synchronization break ..7
3.1.2 Synchronization byte..8
3.1.3 Identifier byte...8
3.1.4 Data byte...9
3.1.5 Cheksum byte..9

3.2 WAKE-UP / SLEEP MODES ...9
3.2.1 Sleep mode conditions ...10
3.2.2 Wake-up conditions ..10

3.3 ERRORS DETECTION...11
3.3.1 Master error detection ..11
3.3.2 Slave error detection ..11

Introduction to LIN

Page 3/11

1 INTRODUCTION

1.1 Purpose of the document

This document is intended to give a general introduction to the LIN. It’s a compilation
of informations from the lin specifications. It describes the features and highlights the
main advantages of this communication bus.

1.2 Acronymous

CRC Cyclic Redundant Code
CAN Control Area Network
CPLD Complex Programmable Logic Device
ECU Electronic Control Unit
ISO International Standard Organisation
LIN Local Interconnect Network
LSB Lower Significant Bit
MSB Most Significant Bit
OSI Open Systems Interconnections
SCI Serial Communication Interface
UART Universal Asynchronous Receiver Transmitter

1.3 Related documents

• LIN consortium steering committee : http://www.lin-subbus.org/

1.4 Reference documents

• LIN specification package revision 1.3 – december 12th, 2002 – LIN
consortium

Introduction to LIN

Page 4/11

2 OVERVIEW

2.1 Introduction

LIN was designed by the LIN consortium and the first specification has been
published in 1999. The consortium members are mainly European cars constructors :
Audi AG, BMW AG, Daimler Chrysler AG, Volkswagen AG, Volvo Cars Corporation
AB, Motorola and Volcano Communications Technologies.
Many car constructors are currently implementing LIN in their vehicles like PSA.

It was particularly designed for low-cost communication between smart sensors and
actuators in automotive applications. It's intended to be used when high bitrates
communications as CAN bus are not needed. It can be based on the UART/SCI
hardware interface, software UART or state-machine.

Applications may be Instrument cluster, air conditioning, seats, mirrors, rain sensors,
light sensors, door locking, windows, ...

2.2 Main features

s Mono-master, up to 15 slaves
s 1 wire bus
s Bitrates from 1 to 20 Kbits/s : 2.4, 9.6 and 19.2 Kbits are usually used in

automotive applications
s Multicast (broadcast) messages

CAN-B

CAN-C

TTx,Flexray

Bluetooth

D2B,MOST

1 2 5 10 Cost index per node

20K

125K

1M

2M

25M

LIN vs others Automotive bus protocols

Multi-master
Two wires

Fault tolerant

Multi-master
Two wires

Time triggered
2x2 wires

Fault tolerant

Token ring
Optical bus

Bitrates
(bits/s)

Wireless

J1850

LIN
Master-slave
Single wire
No crystal

Introduction to LIN

Page 5/11

s Self-synchronization of the slave (only the master has an accurate clock as
crystal)

s Messages with 2,4 or 8 data bytes, 3 control bytes
s Error detection by 8 bits checksum and 2 parity bits in identifier
s Physical layer : ISO9141
s Sleep / wake-up capability

The LIN allows to implement a serial communication in state -machine, small
microcontrollers or CPLDs. A slave ECU doesn’t need an accurate clock and crystals
or resonators could be replaced by RC cell. This is a way to design some smart
actuators or sensors, or smart connectors very cost effective.

The specifications describes 3 of the 7 layers of the OSI model : physical layer, data
link and application layers.

2.3 Topology

A LIN network consists of a LIN master and one or several LIN slaves. Usually in
automotive application, the LIN bus is connected between smart sensor or actuators
and an Electronic Control Unit (ECU) which is often a gateway with CAN bus.
You may find several LIN busses not interconnected between them as shown in the
figure below. This is a major difference with other low-cost busses as K-line which
was intended to link all the ECUs to an external analyse tool for diagnosis purpose.

Introduction to LIN

Page 6/11

A LIN bus length is limited to 40 meters and up to 16 ECUs could be connected.

2.4 Example of LIN implementation

Source : Infineon Technologies

2.5 LIN advantages

• Easy to use,
• Components available,
• Cheaper than CAN and other communications busses,
• Harness reduction,
• More reliable vehicles,
• Extension easy to implement.

Master Slave Slave Slave

LIN

Door
Module

M

M

M

M

M

M

Universal panel

Turn signal

Flap

X axis

Y axis

Door lock

Power window

Deadbolt

CAN bus

Universal
panel

M

M

M

Turn signal

Flap

X axis

Y axis

M
Power
window

M

M

Door lock

Deadbolt

CAN bus

LIN

Introduction to LIN

Page 7/11

3 PROTOCOL

The LIN master knows the sequential order of all data to be transmitted and sends
requests to slaves. These requests are achieved by sending a header.

3.1 Structure of a message

The recessive and dominant level are defined like this :

The bus is in recessive level when not busy.

A message contains the following fields :

• Synchronization break,
• Synchronization byte,
• Identifier byte,
• Data bytes,
• Ckecksum byte.

The data are INTEL coded which means that LSB are sent first.

3.1.1 Synchronization break

A slave can detect a synchronization break by measuring the low phase duration
which is higher than a databyte length.

Clock timing from : (a) master, (b) slave with crystal or resonator, (c) slave without crystal or resonator

SYNCH. BREAK FIELD LEVEL NAME MIN
[TBIT]

NOM
[TBIT]

MAX
[TBIT]

Synch. Br eak low phase dominant TSYNBRK 13a -
Synch. Break delimiter recessive TSYNDEL 1a -

 10b Synch. Break threshold
slave

Dominant TSBRKTS
 9c

SYNCH.
BREAK

IDENT.
BYTE

DATA
2, 4 or 8 BYTES

CHECK.
BYTE

SYNCH.
BYTE

Header from master data from master or slave

SYNCH. BREAK FIELD SYNCH. FIELD

= T SYNBRK TSYNDEL

Introduction to LIN

Page 8/11

3.1.2 Synchronization byte

The synchronization byte is only sent by the master. It’s used for slave self-
synchronization.

A slave defines a bit duration by measuring the 8 bits length and dividing by 8. This
defines the baudrate.

3.1.3 Identifier byte

The identifier byte defines the containt and length of the following data. There is 64
identifiers sorted in 4 groups of 16 messages.

• ID [0...3] = message number

This is the message identifier. There is identifiers from the specification which covers
the LIN protocol. Some identifiers are reserved for future extension and custom
messages.

• ID [4...5] = data length

This is the length of the following data bytes.

• P [0...1] = parity bits

The parity is computed on the identifier bits only.
P0 is the even parity bit, P1 is the odd parity bit.

ID4 ID5 data length
0 0 2 bytes
0 1 2 bytes
1 0 4 bytes
1 1 8 bytes

SYNCH. FIELD

2 TBIT

START
BIT

2 TBIT

2 TBIT

2 TBIT

8 TBIT

STOP
BIT

0
LSB

1

2

3

4

5

6

7
MSB

IDENTIFIER FIELD

Parity
bits

START
BIT

Identifier bits

STOP
BIT

ID0
LSB

P1
MSB

ID1

ID2

ID3

ID4

ID5

P0

Introduction to LIN

Page 9/11

P0 = not (ID1 ⊕ ID3 ⊕ ID4 ⊕ ID5)
P1 = ID0 ⊕ ID1 ⊕ ID2 ⊕ ID4

3.1.4 Data byte

The data length is defined by ID5 and ID6 from the identifier field. It can be 2, 4 or
bytes. The data can be transmitted either by the master or the slave.

3.1.5 Cheksum byte

The checksum (CRC) is computed only on the data field. All other fields are not
included.

The value of the checksum is equal to the inverted modulo 256 sum.
This means : Checksum = (1 - ∑data) mod 256.
The carry of the previous addition is added to the LSB of the next addition.

3.2 Wake-up / Sleep modes

The LIN protocol allows to be in sleep mode to be compliant with the standards and
the environmental constraints. When the vehicle isn´t used, the consumption of the
whole vehicle have to be less than a few milliamps in order to not discharge the
battery. So, each ECU has to enter in sleep mode. Thus, strategies have been
implemented to manage the sleep/wake-up modes on the communication busses.

DATA FIELD

START
BIT

STOP
BIT

D0
LSB

D7
MSB

D1

D2

D3

D4

D5

D6

CHECKSUM FIELD

START
BIT

STOP
BIT

C0
LSB

C7
MSB

C1

C2

C3

C4

C5

C6

Introduction to LIN

Page 10/11

3.2.1 Sleep mode conditions

3.2.1.1 Request from the master

The master has to send three times the sleep mode request : identifier 0x3C and
data byte 0x00. The slaves have to enter in sleep mode in less than 25000 BitTime
and then the bus remains to the recessive level.

The time between the first sleep command and the effective sleep mode is below
30ms+Tsleep.

3.2.1.2 Bus inactivity

When the bus remains in the recessive level during a specified time, the ECUs have
to enter in sleep mode.

3.2.2 Wake-up conditions

3.2.2.1 message from the slave after an event

If an event occurs, a slave can awake the master and the communication will start
again. It will use the wake-up identifier 0x80. The master has to manage a bad wake-
up signal. When the bus becomes dominant, it’s a wake-up condition. However, the
master has to check the wake-up message validity to start again the normal
operation.

3.2.2.2 message from the master

The master can awake the slaves by sending the wake-up message 0x80. Once the
request has been sent, the master starts again its normal communication.

DATA
2, 4 or 8 BYTES

CHECK.
BYTE

SLEEP
CMD

Sleep mode request from master Previous message

SLEEP
CMD

SLEEP
CMD

Sleep mode

Tsleep

WAKE-UP
CMD

Wake-up request from a slave Sleep mode

WAKE-UP
CMD

WAKE-UP
CMD

SYNCH.
BREAK

IDENT.
BYTE

SYNCH.
BYTE

Header from master

WAKE-UP
CMD

Wake-up request from master Sleep mode

SYNCH.
BREAK

IDENT.
BYTE

SYNCH.
BYTE

Header from master

Introduction to LIN

Page 11/11

3.3 Errors detection

There is no error diagnosis thru the LIN. This means that the detected errors are not
sent on the LIN. However, the following errors have to be managed by the ECUs :

- bit error : the monitored output bit is different from the transmitted one,
- checksum error,
- identifier parity error,
- slave no answer,
- bad synchronization frame,
- inactive bus = sleep mode.

The master has to manage most of the errors recovering. It means that it has to apply
a specified faliure mode when needed.

3.3.1 Master error detection

3.3.1.1 During transmission

During transmission the master has to detect the following errors :

- bit error,
- identifier parity error.

3.3.1.2 During reception

When receiving messages from slaves, the master has to detect :

- checksum errors,
- no slave answer.

3.3.2 Slave error detection

3.3.2.1 During transmission

When transmitting a message, the slave has to monitor the follwing error :

- bit error

3.3.2.2 During reception

When receiving, the slave has to detect :

- identifier parity errors,
- checksum errors,
- no slave answer,
- bad synchronisation frame.

- End Of Document -

