I'm working with arduino nano 33 ble sense and trying to run mnist classification model on it. While trying to compile my arduino sketch I'm getting an error like this
Library Arduino_TensorFlowLite has been declared precompiled:
Using precompiled library in C:\Users\prane\Documents\Arduino\libraries\Arduino_TensorFlowLite-2.4.0-ALPHA-precompiled\src\cortex-m4\fpv4-sp-d16-softfp
C:\Users\prane\Documents\Arduino\libraries\Arduino_TensorFlowLite-2.4.0-ALPHA-precompiled\src\cortex-m4\fpv4-sp-d16-softfp\libtensorflowlite.a(micro_error_reporter.cpp.o): In function `tflite::MicroErrorReporter::Report(char const*, std::__va_list)':
/home/arduino/workspace/Libraries-Google-Tensorflow-scraper/Arduino/libraries/tensorflow_lite_mirror/src/tensorflow/lite/micro/micro_error_reporter.cpp:35: undefined reference to `DebugLog'
/home/arduino/workspace/Libraries-Google-Tensorflow-scraper/Arduino/libraries/tensorflow_lite_mirror/src/tensorflow/lite/micro/micro_error_reporter.cpp:36: undefined reference to `DebugLog'
collect2.exe: error: ld returned 1 exit status
exit status 1
Compilation error: exit status 1
I think it is somewhat related to the library. I have included the complete sketch. Can someone please guide me. Thanks
#include "TensorFlowLite.h"
#include "tensorflow/lite/micro/all_ops_resolver.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
//#include "tensorflow/lite/micro/system_setup.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "image_data.h"
#include "model_data.h" /* quantized model */
// Define the input shape and number of classes for the MNIST model
const int kInputTensorSize = 1 * 28 * 28 * 1;
const int kNumClasses = 10;
namespace{
tflite::ErrorReporter* error_reporter = nullptr;
const tflite::Model* model = nullptr;
tflite::MicroInterpreter* interpreter = nullptr;
TfLiteTensor* input = nullptr;
TfLiteTensor* output = nullptr;
int inference_count = 0;
constexpr int kTensorArenaSize = 2*1024;
uint8_t tensor_arena[kTensorArenaSize];
}
void setup() {
Serial.begin(115200);
// tflite::InitializeTarget();
// memset(tensor_arena, 0, kTensorArenaSize*sizeof(uint8_t));
// Set up logging.
static tflite::MicroErrorReporter micro_error_reporter;
error_reporter = µ_error_reporter;
// Map the model into a usable data structure..
model = tflite::GetModel(model_data);
if (model->version() != TFLITE_SCHEMA_VERSION) {
Serial.println("Model provided is schema version "
+ String(model->version()) + " not equal "
+ "to supported version "
+ String(TFLITE_SCHEMA_VERSION));
return;
} else {
Serial.println("Model version: " + String(model->version()));
}
// This pulls in all the operation implementations we need.
static tflite::AllOpsResolver resolver;
// Build an interpreter to run the model with.
static tflite::MicroInterpreter static_interpreter(
model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
interpreter = &static_interpreter;
// Build an interpreter to run the model with.
// tflite::MicroInterpreter* static_interpreter_ptr = new tflite::MicroInterpreter(
// model, resolver, tensor_arena, kTensorArenaSize, error_reporter);
// interpreter = static_interpreter_ptr;
// Allocate memory from the tensor_arena for the model's tensors.
TfLiteStatus allocate_status = interpreter->AllocateTensors();
if (allocate_status != kTfLiteOk) {
Serial.println("AllocateTensors() failed");
return;
} else {
Serial.println("AllocateTensor() Success");
}
size_t used_size = interpreter->arena_used_bytes();
Serial.println("Area used bytes: " + String(used_size));
input = interpreter->input(0);
output = interpreter->output(0);
/* check input */
if (input->type != kTfLiteFloat32) {
Serial.println("input type mismatch. expected input type is float32");
return;
} else {
Serial.println("input type is float32");
}
Serial.println("Model input:");
Serial.println("input->type: " + String(input->type));
Serial.println("dims->size: " + String(input->dims->size));
for (int n = 0; n < input->dims->size; ++n) {
Serial.println("dims->data[n]: " + String(input->dims->data[n]));
}
Serial.println("Model output:");
Serial.println("dims->size: " + String(output->dims->size));
for (int n = 0; n < output->dims->size; ++n) {
Serial.println("dims->data[n]: " + String(output->dims->data[n]));
}
}
void loop() {
// Define the input image array
const uint8_t* kImageDataPtr = kImageData; // Pointer to start of image data
uint8_t input_image[kInputTensorSize];
for (int i = 0; i < kInputTensorSize; i++) {
input_image[i] = *(kImageDataPtr++);
}
for(int i=0; i<kInputTensorSize; i++){
input->data.f[i] = (float)input_image[i] / 255.0;
}
// Run inference
interpreter->Invoke();
// Print the predicted class
int predicted_class = -1;
float max_score = -1;
for (int i = 0; i < kNumClasses; i++) {
float score = output->data.f[i];
if (score > max_score) {
predicted_class = i;
max_score = score;
}
}
Serial.println(predicted_class);
}