Get the current date

Hello,

At the moment my project is getting the current time (using the example included with the Arduino software) would it be possible to modify that code to also get the date? I only need the day and the month. I don't really want to get another library just for the date when I'm already contacting the time server correctly.

Thanks.

At the moment my project is getting the current time (using the example included with the Arduino software)

Getting it from where, using what example?

would it be possible to modify that code to also get the date?

That depends on the answer to the previous question.

Thanks for the reply,

It's just the "Examples > Ethernet > UdpNtpClient" example.

I think (and hope) it's just a simple calculation to work out the day, and another for the month, I just don't know how.

#include <SPI.h>         
#include <Ethernet.h>
#include <EthernetUdp.h>

// Enter a MAC address for your controller below.
// Newer Ethernet shields have a MAC address printed on a sticker on the shield
byte mac[] = {  
  0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

unsigned int localPort = 8888;      // local port to listen for UDP packets

IPAddress timeServer(192, 43, 244, 18); // time.nist.gov NTP server

const int NTP_PACKET_SIZE= 48; // NTP time stamp is in the first 48 bytes of the message

byte packetBuffer[ NTP_PACKET_SIZE]; //buffer to hold incoming and outgoing packets 

// A UDP instance to let us send and receive packets over UDP
EthernetUDP Udp;

void setup() 
{
 // Open serial communications and wait for port to open:
  Serial.begin(9600);
   while (!Serial) {
    ; // wait for serial port to connect. Needed for Leonardo only
  }


  // start Ethernet and UDP
  if (Ethernet.begin(mac) == 0) {
    Serial.println("Failed to configure Ethernet using DHCP");
    // no point in carrying on, so do nothing forevermore:
    for(;;)
      ;
  }
  Udp.begin(localPort);
}

void loop()
{
  sendNTPpacket(timeServer); // send an NTP packet to a time server

    // wait to see if a reply is available
  delay(1000);  
  if ( Udp.parsePacket() ) {  
    // We've received a packet, read the data from it
    Udp.read(packetBuffer,NTP_PACKET_SIZE);  // read the packet into the buffer

    //the timestamp starts at byte 40 of the received packet and is four bytes,
    // or two words, long. First, esxtract the two words:

    unsigned long highWord = word(packetBuffer[40], packetBuffer[41]);
    unsigned long lowWord = word(packetBuffer[42], packetBuffer[43]);  
    // combine the four bytes (two words) into a long integer
    // this is NTP time (seconds since Jan 1 1900):
    unsigned long secsSince1900 = highWord << 16 | lowWord;  
    Serial.print("Seconds since Jan 1 1900 = " );
    Serial.println(secsSince1900);               

    // now convert NTP time into everyday time:
    Serial.print("Unix time = ");
    // Unix time starts on Jan 1 1970. In seconds, that's 2208988800:
    const unsigned long seventyYears = 2208988800UL;     
    // subtract seventy years:
    unsigned long epoch = secsSince1900 - seventyYears;  
    // print Unix time:
    Serial.println(epoch);                               


    // print the hour, minute and second:
    Serial.print("The UTC time is ");       // UTC is the time at Greenwich Meridian (GMT)
    Serial.print((epoch  % 86400L) / 3600); // print the hour (86400 equals secs per day)
    Serial.print(':');  
    if ( ((epoch % 3600) / 60) < 10 ) {
      // In the first 10 minutes of each hour, we'll want a leading '0'
      Serial.print('0');
    }
    Serial.print((epoch  % 3600) / 60); // print the minute (3600 equals secs per minute)
    Serial.print(':'); 
    if ( (epoch % 60) < 10 ) {
      // In the first 10 seconds of each minute, we'll want a leading '0'
      Serial.print('0');
    }
    Serial.println(epoch %60); // print the second
  }
  // wait ten seconds before asking for the time again
  delay(10000); 
}

// send an NTP request to the time server at the given address 
unsigned long sendNTPpacket(IPAddress& address)
{
  // set all bytes in the buffer to 0
  memset(packetBuffer, 0, NTP_PACKET_SIZE); 
  // Initialize values needed to form NTP request
  // (see URL above for details on the packets)
  packetBuffer[0] = 0b11100011;   // LI, Version, Mode
  packetBuffer[1] = 0;     // Stratum, or type of clock
  packetBuffer[2] = 6;     // Polling Interval
  packetBuffer[3] = 0xEC;  // Peer Clock Precision
  // 8 bytes of zero for Root Delay & Root Dispersion
  packetBuffer[12]  = 49; 
  packetBuffer[13]  = 0x4E;
  packetBuffer[14]  = 49;
  packetBuffer[15]  = 52;

  // all NTP fields have been given values, now
  // you can send a packet requesting a timestamp: 		   
  Udp.beginPacket(address, 123); //NTP requests are to port 123
  Udp.write(packetBuffer,NTP_PACKET_SIZE);
  Udp.endPacket(); 
}

Take a look at the time library: Arduino Playground - Time - it'll do it for you.

There's a big clue right here.

    Serial.print((epoch  % 86400L) / 3600); // print the hour (86400 equals secs per day)

This is throwing away the number of days since January 1, 1970. If you know that number of days (epoch/86400), it is relatively straightforward to convert that number of days into a number of years. That gets you the current year.

From there, you can get the month and day.

On the other hand, the Time library has a setTime() function that lets you specify the time as a number of seconds since Jan. 1, 1970. What a coincidence that the dates match up. Then, of course, you can use the year(), month(), day(), hour(), minute() and second() functions to get the values of interest.

Thanks for your help. I hadn't properly thought about it.