Yes. See the datasheet. For '328P:
9.3 Low Power Crystal Oscillator
Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an On-chip Oscillator, as shown in Figure 9-2 on page 28. Either a quartz crystal or a ceramic resonator may be used.
This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 output. It gives the lowest power consumption, but is not capable of driving other clock inputs, and may be more susceptible to noise in noisy environments. In these cases, refer to the ”Full Swing Crystal Oscillator” on page 29.
C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment.
Some initial guidelines for choosing capacitors for use with crystals are given in Table 9-3 on page 28. For ceramic resonators, the capacitor values given by the manufacturer should be used.
[table shows 12-22pF for0.9 to 16 MHz operation, with different fuse settings.]
9.4 Full Swing Crystal Oscillator
Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an On-chip Oscillator, as shown in Figure 9-2 on page 28. Either a quartz crystal or a ceramic resonator may be used.
This Crystal Oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 output. This is useful for driving other clock inputs and in noisy environments. The current consumption is higher than the ”Low Power Crystal Oscillator” on page 28. Note that the Full Swing Crystal Oscillator will only operate for VCC = 2.7 - 5.5 volts.
C1 and C2 should always be equal for both crystals and resonators. The optimal value of the capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the electromagnetic noise of the environment.
Some initial guidelines for choosing capacitors for use with crystals are given in Table 9-6 on page 30. For ceramic resonators, the capacitor values given by the manufacturer should be used.
[table shows 12-22pF for0.4 to 20 MHz operation, with just one fuse setting.]