MPU6050 KalmanFilter

Hi all,

I've got a MPU6050 (GY521)

and this code: (I don't really remember where i got it)

#include<Wire.h>
const int MPU=0x68;  // I2C address of the MPU-6050
int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;
void setup(){
  Wire.begin();
  Wire.beginTransmission(MPU);
  Wire.write(0x6B);  // PWR_MGMT_1 register
  Wire.write(0);     // set to zero (wakes up the MPU-6050)
  Wire.endTransmission(true);
  Serial.begin(9600);
}
void loop(){
  Wire.beginTransmission(MPU);
  Wire.write(0x3B);  // starting with register 0x3B (ACCEL_XOUT_H)
  Wire.endTransmission(false);
  Wire.requestFrom(MPU,14,true);  // request a total of 14 registers
  AcX=Wire.read()<<8|Wire.read();  // 0x3B (ACCEL_XOUT_H) & 0x3C (ACCEL_XOUT_L)     
  AcY=Wire.read()<<8|Wire.read();  // 0x3D (ACCEL_YOUT_H) & 0x3E (ACCEL_YOUT_L)
  AcZ=Wire.read()<<8|Wire.read();  // 0x3F (ACCEL_ZOUT_H) & 0x40 (ACCEL_ZOUT_L)
  Tmp=Wire.read()<<8|Wire.read();  // 0x41 (TEMP_OUT_H) & 0x42 (TEMP_OUT_L)
  GyX=Wire.read()<<8|Wire.read();  // 0x43 (GYRO_XOUT_H) & 0x44 (GYRO_XOUT_L)
  GyY=Wire.read()<<8|Wire.read();  // 0x45 (GYRO_YOUT_H) & 0x46 (GYRO_YOUT_L)
  GyZ=Wire.read()<<8|Wire.read();  // 0x47 (GYRO_ZOUT_H) & 0x48 (GYRO_ZOUT_L)
  Serial.print("AcX = "); Serial.print(AcX);
  Serial.print(" | AcY = "); Serial.print(AcY);
  Serial.print(" | AcZ = "); Serial.print(AcZ);
  Serial.print(" | Tmp = "); Serial.print(Tmp/340.00+36.53);  //equation for temperature in degrees C from datasheet
  Serial.print(" | GyX = "); Serial.print(GyX);
  Serial.print(" | GyY = "); Serial.print(GyY);
  Serial.print(" | GyZ = "); Serial.println(GyZ);
  delay(333);
}

I got all the data working really good but the Ax. and Gyro. are not balanced/filtered and as I know
some people use different kind of filters which one is "Kalman Filter" now i done a small research
and i found a lib. which contain the filter exactly for the MPU6050:
Kalman Filter MPU6050 Lib. example
but it's kinda complicated code and hard to learn as a beginner .

As you seen my simple above code it's kinda simple and easy to get the data from the MPU6050
but the Kalman Filter example it's head pain for a beginner.

So does anyone know a easier example and a smaller code which gonna be easier to understand
how everything it's working. I've also seen that the simple code just get 0 -> 9000+ data, would be nice if i had them in degrees.

Forget Kalman filtering, its only of use if you have characterised all your noise sources and modelled
them properly anyway, just go for a complementary filter:

http://www.pieter-jan.com/node/11

Simple easy robust, sure a Kalman filter could perform better, but worry about that
later.

MarkT Ok, i will read the URL you gave me but just to inform you, i'd like to use the MPU6050
for balancing robot, quadcopter, airplane, servos, so i'd like to be really accurate.

I think i will stick with this code:

/* Copyright (C) 2012 Kristian Lauszus, TKJ Electronics. All rights reserved.
 This software may be distributed and modified under the terms of the GNU
 General Public License version 2 (GPL2) as published by the Free Software
 Foundation and appearing in the file GPL2.TXT included in the packaging of
 this file. Please note that GPL2 Section 2[b] requires that all works based
 on this software must also be made publicly available under the terms of
 the GPL2 ("Copyleft").
 Contact information
 -------------------
 Kristian Lauszus, TKJ Electronics
 Web      :  http://www.tkjelectronics.com
 e-mail   :  kristianl@tkjelectronics.com
 */

#include <Wire.h>
#include "Kalman.h" // Source: https://github.com/TKJElectronics/KalmanFilter

#define RESTRICT_PITCH // Comment out to restrict roll to ±90deg instead - please read: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf

Kalman kalmanX; // Create the Kalman instances
Kalman kalmanY;

/* IMU Data */
double accX, accY, accZ;
double gyroX, gyroY, gyroZ;
int16_t tempRaw;

double gyroXangle, gyroYangle; // Angle calculate using the gyro only
double compAngleX, compAngleY; // Calculated angle using a complementary filter
double kalAngleX, kalAngleY; // Calculated angle using a Kalman filter

uint32_t timer;
uint8_t i2cData[14]; // Buffer for I2C data

// TODO: Make calibration routine

void setup() {
  Serial.begin(9600);
  Wire.begin();
  TWBR = ((F_CPU / 400000L) - 16) / 2; // Set I2C frequency to 400kHz

  i2cData[0] = 7; // Set the sample rate to 1000Hz - 8kHz/(7+1) = 1000Hz
  i2cData[1] = 0x00; // Disable FSYNC and set 260 Hz Acc filtering, 256 Hz Gyro filtering, 8 KHz sampling
  i2cData[2] = 0x00; // Set Gyro Full Scale Range to ±250deg/s
  i2cData[3] = 0x00; // Set Accelerometer Full Scale Range to ±2g
  while (i2cWrite(0x19, i2cData, 4, false)); // Write to all four registers at once
  while (i2cWrite(0x6B, 0x01, true)); // PLL with X axis gyroscope reference and disable sleep mode

  while (i2cRead(0x75, i2cData, 1));
  if (i2cData[0] != 0x68) { // Read "WHO_AM_I" register
    Serial.print(F("Error reading sensor"));
    while (1);
  }

  delay(100); // Wait for sensor to stabilize

  /* Set kalman and gyro starting angle */
  while (i2cRead(0x3B, i2cData, 6));
  accX = (i2cData[0] << 8) | i2cData[1];
  accY = (i2cData[2] << 8) | i2cData[3];
  accZ = (i2cData[4] << 8) | i2cData[5];

  // Source: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf eq. 25 and eq. 26
  // atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
  // It is then converted from radians to degrees
#ifdef RESTRICT_PITCH // Eq. 25 and 26
  double roll  = atan2(accY, accZ) * RAD_TO_DEG;
  double pitch = atan(-accX / sqrt(accY * accY + accZ * accZ)) * RAD_TO_DEG;
#else // Eq. 28 and 29
  double roll  = atan(accY / sqrt(accX * accX + accZ * accZ)) * RAD_TO_DEG;
  double pitch = atan2(-accX, accZ) * RAD_TO_DEG;
#endif

  kalmanX.setAngle(roll); // Set starting angle
  kalmanY.setAngle(pitch);
  gyroXangle = roll;
  gyroYangle = pitch;
  compAngleX = roll;
  compAngleY = pitch;

  timer = micros();
}

void loop() {
  /* Update all the values */
  while (i2cRead(0x3B, i2cData, 14));
  accX = ((i2cData[0] << 8) | i2cData[1]);
  accY = ((i2cData[2] << 8) | i2cData[3]);
  accZ = ((i2cData[4] << 8) | i2cData[5]);
  tempRaw = (i2cData[6] << 8) | i2cData[7];
  gyroX = (i2cData[8] << 8) | i2cData[9];
  gyroY = (i2cData[10] << 8) | i2cData[11];
  gyroZ = (i2cData[12] << 8) | i2cData[13];

  double dt = (double)(micros() - timer) / 1000000; // Calculate delta time
  timer = micros();

  // Source: http://www.freescale.com/files/sensors/doc/app_note/AN3461.pdf eq. 25 and eq. 26
  // atan2 outputs the value of -π to π (radians) - see http://en.wikipedia.org/wiki/Atan2
  // It is then converted from radians to degrees
#ifdef RESTRICT_PITCH // Eq. 25 and 26
  double roll  = atan2(accY, accZ) * RAD_TO_DEG;
  double pitch = atan(-accX / sqrt(accY * accY + accZ * accZ)) * RAD_TO_DEG;
#else // Eq. 28 and 29
  double roll  = atan(accY / sqrt(accX * accX + accZ * accZ)) * RAD_TO_DEG;
  double pitch = atan2(-accX, accZ) * RAD_TO_DEG;
#endif

  double gyroXrate = gyroX / 131.0; // Convert to deg/s
  double gyroYrate = gyroY / 131.0; // Convert to deg/s

#ifdef RESTRICT_PITCH
  // This fixes the transition problem when the accelerometer angle jumps between -180 and 180 degrees
  if ((roll < -90 && kalAngleX > 90) || (roll > 90 && kalAngleX < -90)) {
    kalmanX.setAngle(roll);
    compAngleX = roll;
    kalAngleX = roll;
    gyroXangle = roll;
  } else
    kalAngleX = kalmanX.getAngle(roll, gyroXrate, dt); // Calculate the angle using a Kalman filter

  if (abs(kalAngleX) > 90)
    gyroYrate = -gyroYrate; // Invert rate, so it fits the restriced accelerometer reading
  kalAngleY = kalmanY.getAngle(pitch, gyroYrate, dt);
#else
  // This fixes the transition problem when the accelerometer angle jumps between -180 and 180 degrees
  if ((pitch < -90 && kalAngleY > 90) || (pitch > 90 && kalAngleY < -90)) {
    kalmanY.setAngle(pitch);
    compAngleY = pitch;
    kalAngleY = pitch;
    gyroYangle = pitch;
  } else
    kalAngleY = kalmanY.getAngle(pitch, gyroYrate, dt); // Calculate the angle using a Kalman filter

  if (abs(kalAngleY) > 90)
    gyroXrate = -gyroXrate; // Invert rate, so it fits the restriced accelerometer reading
  kalAngleX = kalmanX.getAngle(roll, gyroXrate, dt); // Calculate the angle using a Kalman filter
#endif

  gyroXangle += gyroXrate * dt; // Calculate gyro angle without any filter
  gyroYangle += gyroYrate * dt;
  //gyroXangle += kalmanX.getRate() * dt; // Calculate gyro angle using the unbiased rate
  //gyroYangle += kalmanY.getRate() * dt;

  compAngleX = 0.93 * (compAngleX + gyroXrate * dt) + 0.07 * roll; // Calculate the angle using a Complimentary filter
  compAngleY = 0.93 * (compAngleY + gyroYrate * dt) + 0.07 * pitch;

  // Reset the gyro angle when it has drifted too much
  if (gyroXangle < -180 || gyroXangle > 180)
    gyroXangle = kalAngleX;
  if (gyroYangle < -180 || gyroYangle > 180)
    gyroYangle = kalAngleY;

  /* Print Data */
#if 0 // Set to 1 to activate
  Serial.print(accX); Serial.print("\t");
  Serial.print(accY); Serial.print("\t");
  Serial.print(accZ); Serial.print("\t");
  Serial.print(gyroX); Serial.print("\t");
  Serial.print(gyroY); Serial.print("\t");
  Serial.print(gyroZ); Serial.print("\t");
  Serial.print("\t");
#endif

  Serial.print(roll); Serial.print("\t");
  Serial.print(gyroXangle); Serial.print("\t");
  Serial.print(compAngleX); Serial.print("\t");
  Serial.print(kalAngleX); Serial.print("\t");

  Serial.print("\t");

  Serial.print(pitch); Serial.print("\t");
  Serial.print(gyroYangle); Serial.print("\t");
  Serial.print(compAngleY); Serial.print("\t");
  Serial.print(kalAngleY); Serial.print("\t");

#if 0 // Set to 1 to print the temperature
  Serial.print("\t");
  double temperature = (double)tempRaw / 340.0 + 36.53;
  Serial.print(temperature); Serial.print("\t");
#endif

  Serial.print("\r\n");
  delay(2);
}

It got simple Ax,Gyro, Complementary and kalman filter, I'll just read the lines to figure out how everything it's working :smiley: Reading topics it's not in my spirit but reading clear code it's my life :smiley:

This code is really good. It only gives x and y values but is much simpler to use in your own code.

I think i will stick with this code:

That code doesn't work well, and it is not even a Kalman filter. See http://home.earthlink.net/~schultdw/bbot/bbot.html

If you want a genuine Kalman filter that actually works, use RTimulib, the best open source example available.