Water Pump and Soil Moisture

I want to create a project in which I have a soil moisture sensor and a water pump. I want the water pump to be turned on when the moisture of the soil is under a certain level. When it gets over that certain level, I want the pump to stop.

I have these components:

  1. Soil Moisture Sensor LM393;
  2. A 5V water pump;
  3. 3 x 10k ohm resistor;
  4. SRD-05VDC-SL-C KY-019
  5. Breadboard
  6. 5V from my laptop
  7. Arduino Uno

The question is: How do I connect all of them to an Arduino Uno? What to which pin? (I'm sorry, I'm a beginner).

Hello czky
Keep it simple and stupid firstly.
Run some tutorials for the hardware selected.
If you are happy with the results of the tutorials you can merge these to your project.
Have a nice day and enjoy coding in C++.

Does the relay module have electronics on it to power the relay coil or is the coil current from the initializing device, such as the microcontroller?

The SRD-05VDC-SL-C relay is a type of relay known as a "signal relay", which means it is designed to be controlled by a low-power electronic signal, such as that from a microcontroller. It does not have electronics on it to power the relay coil. The coil current is supplied by the initializing device, such as the microcontroller, that is sending the electronic signal to the relay.

The MCU does not supply the current needed to drive the coil of a relay.

Cover the exposed metal connector parts of the soil moisture sensor with silicone.

The pins to use is mostly up to you.

May I suggest to not use the scheme of the moisture level is correct stop the relay now. I found it takes time for the water to travel in the dirt. When the water from the pump gets to the soil sensor a lot of water has flowed from the pump into the soil but the moisture level reading has a lag due to the flow of water.

Instead I run my pumps for 11 seconds, then wait one minute, take another reading, and if more water is needed do another 11 second pump run. Repeat till the moisture level has been reached or exceeded.

Don't power pumps or relays from the controller pins. The tiny strip on the board might not manage the currents.

Welcome.
Break your project down into simple parts

  1. detect moisture
  2. turn on/off pump

Start project 1, detecting moisture.
Do your research and find the appropriate sensor and arduino and attach them correctly using eg a breadboard. Now you need to open a sketch and start coding. You want to work carefully and when you complete any significant step you should use the 'save as' option to create a new file with a sensible name such as moisture sensor v1. When you have the moisture sensor working and returning a value you should try to encapsulate the code into a function (also with a sensible name such as detectMoisture). That way the code is protected and you can 'call it' when you need it. Your function could return either the moisture level or a binary 0/1. If the latter you could have a variable in initialisation to set your moisture level trigger which you could adjust in your code as required.
Use an LED to simulate your relay on the breadboard and start a new sketch called something sensible like 'moisture sensor and output LED'. Now you need to create code that takes the binary output of your motion sensor function and trigger the LED to turn on for an appropriate interval. Use the same iterative process as in 1.
When you want to add a relay then do your research particularly on the voltage and current needed to drive the relay. Be careful of using the breadboard as they also have limits so pumps are often high current. Research flyback diodes.

Think about things such as encapsulation, non-blocking code, hysteresis etc

I really like your idea of pumping then wait. Do you have any code you can share that gives an example of this pump and wait? Im working on a similar project and had the same concern of overwatering. Any help you can provide is greatly appreciated, thanks.

sure, see void fDoMoistureDetector1( void * parameter ).

#include <ESP32Time.h>
#include <WiFi.h>
#include <PubSubClient.h>
#include "certs.h" // include the connection info for WiFi and MQTT
#include "sdkconfig.h" // used for log printing
#include "esp_system.h"
#include "freertos/FreeRTOS.h" //freeRTOS items to be used
#include "freertos/task.h"
#include <driver/adc.h>
#include <SimpleKalmanFilter.h>
////
WiFiClient      wifiClient; // do the WiFi instantiation thing
PubSubClient    MQTTclient( mqtt_server, mqtt_port, wifiClient ); //do the MQTT instantiation thing
ESP32Time       rtc;
////
#define evtWaterCactus      ( 1 << 0 ) // declare an event
#define evtADCreading0      ( 1 << 3 )
EventGroupHandle_t eg; // variable for the event group handle
////
SemaphoreHandle_t sema_MQTT_KeepAlive;
SemaphoreHandle_t sema_mqttOK;
SemaphoreHandle_t sema_WaterCactus;
////
QueueHandle_t xQ_RemainingMoistureMQTT;
QueueHandle_t xQ_RM;
QueueHandle_t xQ_Message;
////
esp_timer_handle_t oneshot_timer; //veriable to store the hardware timer handle
////
const int payloadSize = 150;
struct stu_message
{
  char payload [payloadSize] = {'\0'};
  String topic ;
} x_message;////
int    mqttOK = 0;
bool   TimeSet = false;
//bool   manualPumpOn = false;
////
void IRAM_ATTR oneshot_timer_callback( void* arg )
{
  BaseType_t xHigherPriorityTaskWoken;
  xEventGroupSetBitsFromISR( eg, evtWaterCactus, &xHigherPriorityTaskWoken );
} //void IRAM_ATTR oneshot_timer_callback( void* arg )
////
// interrupt service routine for WiFi events put into IRAM
void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
{
  switch (event) {
    case SYSTEM_EVENT_STA_CONNECTED:
      break;
    case SYSTEM_EVENT_STA_DISCONNECTED:
      log_i("Disconnected from WiFi access point");
      break;
    case SYSTEM_EVENT_AP_STADISCONNECTED:
      log_i("WiFi client disconnected");
      break;
    default: break;
  }
} // void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
////
void IRAM_ATTR mqttCallback(char* topic, byte * payload, unsigned int length)
{
  // clear locations
  memset( x_message.payload, '\0', payloadSize ); // clear payload char buffer
  x_message.topic = ""; //clear topic string buffer
  x_message.topic = topic; //store new topic
  memcpy( x_message.payload, payload, length );
  xQueueOverwrite( xQ_Message, (void *) &x_message );// send data to queue
} // void mqttCallback(char* topic, byte* payload, unsigned int length)
////
void setup()
{
  x_message.topic.reserve( payloadSize );
  //
  xQ_Message = xQueueCreate( 1, sizeof(stu_message) );
  xQ_RemainingMoistureMQTT = xQueueCreate( 1, sizeof(float) ); // sends a queue copy
  xQ_RM = xQueueCreate( 1, sizeof(float) );
  //
  eg = xEventGroupCreate(); // get an event group handle
  //
  sema_mqttOK =  xSemaphoreCreateBinary();
  sema_WaterCactus = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_mqttOK );
  xSemaphoreGive( sema_WaterCactus );
  //
  gpio_config_t io_cfg = {}; // initialize the gpio configuration structure
  io_cfg.mode = GPIO_MODE_INPUT; // set gpio mode. GPIO_NUM_0 input from water level sensor
  io_cfg.pull_down_en = GPIO_PULLDOWN_ENABLE; // enable pull down
  io_cfg.pin_bit_mask = ( (1ULL << GPIO_NUM_0) | (1ULL << GPIO_NUM_18) ); //bit mask of the pins to set, assign gpio number to be configured
  gpio_config(&io_cfg); // configure the gpio based upon the parameters as set in the configuration structure
  //
  io_cfg = {}; //set configuration structure back to default values
  io_cfg.mode = GPIO_MODE_OUTPUT;
  io_cfg.pin_bit_mask = ( (1ULL << GPIO_NUM_4) | (1ULL << GPIO_NUM_5) | (1ULL << GPIO_NUM_19)  ); //bit mask of the pins to set, assign gpio number to be configured
  gpio_config(&io_cfg);
  gpio_set_level( GPIO_NUM_4, LOW); // deenergize relay module
  gpio_set_level( GPIO_NUM_5, LOW); // deenergize valve
  gpio_set_level( GPIO_NUM_19, LOW); // deenergize valve
  // set up A:D channels  https://dl.espressif.com/doc/esp-idf/latest/api-reference/peripherals/adc.html
  adc1_config_width(ADC_WIDTH_12Bit);
  adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_11);// using GPIO 39
  //
  // https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/esp_timer.html?highlight=hardware%20timer High Resoultion Timer API
  esp_timer_create_args_t oneshot_timer_args = {}; // initialize High Resoulition Timer (HRT) configuration structure
  oneshot_timer_args.callback = &oneshot_timer_callback; // configure for callback, name of callback function
  esp_timer_create( &oneshot_timer_args, &oneshot_timer ); // assign configuration to the HRT, receive timer handle
  //
  xTaskCreatePinnedToCore( MQTTkeepalive, "MQTTkeepalive", 10000, NULL, 6, NULL, 1 );
  xTaskCreatePinnedToCore( fparseMQTT, "fparseMQTT", 10000, NULL, 5, NULL, 1 ); // assign all to core 1, WiFi in use.
  xTaskCreatePinnedToCore( fPublish, "fPublish", 9000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fReadAD, "fReadAD", 9000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fDoMoistureDetector, "fDoMoistureDetector", 70000, NULL, 4, NULL, 1 );
  xTaskCreatePinnedToCore( fmqttWatchDog, "fmqttWatchDog", 3000, NULL, 2, NULL, 1 );
} //void setup()
////
// check gpiopin for cactus is present
// water cactus upon detection
// wait 30 days to water the cactus again
// to water
// let fDoMoistureDetector know of motor use.
// open valve
// run motor for 10 times each time for 10 seconds 5 minutes apart
// after sequence is done release fDoMoistureDetector
// start counting 30 days
void fWaterCactus( void * parameter )
{
  uint32_t microSecondsInADay = 86400000000;
  uint32_t DayCount           = 29;
  uint64_t pastTime           = esp_timer_get_time();
  uint32_t WaterTimeCount     = 0;
  //GPIO_NUM_18 is cactus detect pin.
  for (;;)
  {
    if ( gpio_get_level( GPIO_NUM_18 ) )
    {
      if ( (esp_timer_get_time() - pastTime) >= microSecondsInADay )
      {
        DayCount++;
      }
      if (DayCount == 30 )
      {
        xSemaphoreTake( sema_WaterCactus, portMAX_DELAY );// stops the other task from running the pump.
        //water cactus
        while ( WaterTimeCount < 10 )
        {
          gpio_set_level( GPIO_NUM_19, HIGH); // energize/open valve
          WaterPump0_on();
          // one minute of uS = 60000000
          esp_timer_start_once( oneshot_timer, 60000000 ); 
          xEventGroupWaitBits (eg, evtWaterCactus, pdTRUE, pdTRUE, portMAX_DELAY ); // event will be triggered by the timer expiring, wait here for the 280uS
          WaterPump0_off();
          gpio_set_level( GPIO_NUM_19, LOW); // deenergize/close valve
          esp_timer_start_once( oneshot_timer, 60000000 ); 
          xEventGroupWaitBits (eg, evtWaterCactus, pdTRUE, pdTRUE, portMAX_DELAY ); // event will be triggered by the timer expiring, wait here for the 280uS
          WaterTimeCount++;
        }
        xSemaphoreGive( sema_WaterCactus );
        WaterTimeCount = 0;
        DayCount = 0; // reset day couunt
      }
    } else {
      DayCount = 0;
      pastTime  = esp_timer_get_time();
    }
  } // for(;;)
  vTaskDelete( NULL );
}
////
void fReadAD( void * parameter )
{
  float    ADbits = 4096.0f;
  float    uPvolts = 3.3f;
  float    adcValue_b = 0.0f; //plant in yellow pot
  uint64_t TimePastKalman  = esp_timer_get_time(); // used by the Kalman filter UpdateProcessNoise, time since last kalman calculation
  float    WetValue = 1.07f; // value found by putting sensor in water
  float    DryValue = 2.732f; // value of probe when held in air
  float    Range = DryValue - WetValue;
  float    RemainingMoisture = 100.0f;
  SimpleKalmanFilter KF_ADC_b( 1.0f, 1.0f, .01f );
  for (;;)
  {
    xEventGroupWaitBits (eg, evtADCreading0, pdTRUE, pdTRUE, portMAX_DELAY ); //
    adcValue_b = float( adc1_get_raw(ADC1_CHANNEL_3) ); //take a raw ADC reading
    adcValue_b = ( adcValue_b * uPvolts ) / ADbits; //calculate voltage
    KF_ADC_b.setProcessNoise( (esp_timer_get_time() - TimePastKalman) / 1000000.0f ); //get time, in microsecods, since last readings
    adcValue_b = KF_ADC_b.updateEstimate( adcValue_b ); // apply simple Kalman filter
    TimePastKalman = esp_timer_get_time(); // time of update complete
    RemainingMoisture = 100.0f * (1 - ((adcValue_b - WetValue) / (DryValue - WetValue))); //remaining moisture =  1-(xTarget - xMin) / (xMax - xMin) as a percentage of the sensor wet dry volatges
    xQueueOverwrite( xQ_RM, (void *) &RemainingMoisture );
    //log_i( "adcValue_b = %f remaining moisture %f%", adcValue_b, RemainingMoisture );
  }
  vTaskDelete( NULL );
}
////
void fPublish( void * parameter )
{
  float  RemainingMoisture = 100.0f;
  for (;;)
  {
    if ( xQueueReceive(xQ_RemainingMoistureMQTT, &RemainingMoisture, portMAX_DELAY) == pdTRUE )
    {
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY ); // whiles MQTTlient.loop() is running no other mqtt operations should be in process
      MQTTclient.publish( topicRemainingMoisture_0, String(RemainingMoisture).c_str() );
      xSemaphoreGive( sema_MQTT_KeepAlive );
    }
  } // for (;;)
  vTaskDelete( NULL );
} //void fPublish( void * parameter )
////
void WaterPump0_off()
{
  gpio_set_level( GPIO_NUM_4, LOW); //denergize relay module
}
////
void WaterPump0_on()
{
  gpio_set_level( GPIO_NUM_4, HIGH); //energize relay module
}
////
void fmqttWatchDog( void * paramater )
{
  int UpdateImeTrigger = 86400; //seconds in a day
  int UpdateTimeInterval = 85000; // get another reading when = UpdateTimeTrigger
  int maxNonMQTTresponse = 12;
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 5000; //delay for mS
  for (;;)
  {
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
    xSemaphoreTake( sema_mqttOK, portMAX_DELAY ); // update mqttOK
    mqttOK++;
    xSemaphoreGive( sema_mqttOK );
    if ( mqttOK >= maxNonMQTTresponse )
    {
      ESP.restart();
    }
    UpdateTimeInterval++; // trigger new time get
    if ( UpdateTimeInterval >= UpdateImeTrigger )
    {
      TimeSet = false; // sets doneTime to false to get an updated time after a days count of seconds
      UpdateTimeInterval = 0;
    }
  }
  vTaskDelete( NULL );
} //void fmqttWatchDog( void * paramater )
////

void fDoMoistureDetector1( void * parameter )
{
  //wait for a mqtt connection
  while ( !MQTTclient.connected() )
  {
    vTaskDelay( 250 );
  }
  int      TimeToPublish = 5000000; //5000000uS
  int      TimeForADreading = 100 * 1000; // 100mS
  uint64_t TimePastPublish = esp_timer_get_time(); // used by publish
  uint64_t TimeADreading   = esp_timer_get_time();
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 10; //delay for 10mS
  float    RemainingMoisture = 100.0f; //prevents pump turn on during start up
  bool     pumpOn = false;
  uint64_t PumpOnTime = esp_timer_get_time();
  int      PumpRunTime = 11000000;
  uint64_t PumpOffWait = esp_timer_get_time();
  uint64_t PumpOffWaitFor = 60000000; //one minute
  float    lowMoisture = 23.0f;
  float    highMoisture = 40.0f;
  for (;;)
  {
    xSemaphoreTake( sema_WaterCactus, portMAX_DELAY );
    //read AD values every 100mS.
    if ( (esp_timer_get_time() - TimeADreading) >= TimeForADreading )
    {
      xEventGroupSetBits( eg, evtADCreading0 );
      TimeADreading = esp_timer_get_time();
    }
    xQueueReceive(xQ_RM, &RemainingMoisture, 0 ); //receive queue stuff no waiting
    //read gpio 0 is water level good. Yes: OK to run pump : no pump off.   remaining moisture good, denergize water pump otherwise energize water pump.
    if ( RemainingMoisture >= highMoisture )
    {
      WaterPump0_off();
    }
    if ( !pumpOn )
    {
      log_i( "not pump on ");
      if ( gpio_get_level( GPIO_NUM_0 ) )
      {
        if ( RemainingMoisture <= lowMoisture )
        {
          //has one minute passed since last pump energize, if so then allow motor to run
          if ( (esp_timer_get_time() - PumpOffWait) >= PumpOffWaitFor )
          {
            gpio_set_level( GPIO_NUM_5, HIGH); //open valve
            WaterPump0_on();
            log_i( "pump on " );
            pumpOn = !pumpOn;
            PumpOnTime = esp_timer_get_time();
          }
        }
        //xSemaphoreGive( sema_RemainingMoisture );
      } else {
        log_i( "water level bad " );
        WaterPump0_off();
        gpio_set_level( GPIO_NUM_5, LOW); //denergize/close valve
        PumpOffWait = esp_timer_get_time();
      }
    } else {
      /*
         pump goes on runs for X seconds then turn off, then wait PumpOffWaitTime before being allowed to energize again
      */
      if ( (esp_timer_get_time() - PumpOnTime) >= PumpRunTime )
      {
        log_i( "pump off " );
        WaterPump0_off(); // after 5 seconds turn pump off
        gpio_set_level( GPIO_NUM_5, LOW); //denergize/close valve
        pumpOn = !pumpOn;
        PumpOffWait = esp_timer_get_time();
      }
    }
    // publish to MQTT every 5000000uS
    if ( (esp_timer_get_time() - TimePastPublish) >= TimeToPublish )
    {
      xQueueOverwrite( xQ_RemainingMoistureMQTT, (void *) &RemainingMoisture );// data for mqtt publish
      TimePastPublish = esp_timer_get_time(); // get next publish time
    }
    xSemaphoreGive( sema_WaterCactus );
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete( NULL );
}// end fDoMoistureDetector1()
////
void fDoMoistureDetector( void * parameter )
{
  //wait for a mqtt connection
  while ( !MQTTclient.connected() )
  {
    vTaskDelay( 250 );
  }
  int      TimeToPublish = 5000000; //5000000uS
  int      TimeForADreading = 100 * 1000; // 100mS
  uint64_t TimePastPublish = esp_timer_get_time(); // used by publish
  uint64_t TimeADreading   = esp_timer_get_time();
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 10; //delay for 10mS
  float    RemainingMoisture = 100.0f; //prevents pump turn on during start up
  bool     pumpOn = false;
  uint64_t PumpOnTime = esp_timer_get_time();
  int      PumpRunTime = 11000000;
  uint64_t PumpOffWait = esp_timer_get_time();
  uint64_t PumpOffWaitFor = 60000000; //one minute
  float    lowMoisture = 23.0f;
  float    highMoisture = 40.0f;
  for (;;)
  {
    xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY );
    //read AD values every 100mS.
    if ( (esp_timer_get_time() - TimeADreading) >= TimeForADreading )
    {
      xEventGroupSetBits( eg, evtADCreading0 );
      TimeADreading = esp_timer_get_time();
    }
    xQueueReceive(xQ_RM, &RemainingMoisture, 0 ); //receive queue stuff no waiting
    //read gpio 0 is water level good. Yes: OK to run pump : no pump off.   remaining moisture good, denergize water pump otherwise energize water pump.
    if ( RemainingMoisture >= highMoisture )
    {
      WaterPump0_off();
    }
    if ( !pumpOn )
    {
      log_i( "not pump on ");
      if ( gpio_get_level( GPIO_NUM_0 ) )
      {
        if ( RemainingMoisture <= lowMoisture )
        {
          //has one minute passed since last pump energize, if so then allow motor to run
          if ( (esp_timer_get_time() - PumpOffWait) >= PumpOffWaitFor )
          {
            WaterPump0_on();
            log_i( "pump on " );
            pumpOn = !pumpOn;
            PumpOnTime = esp_timer_get_time();
          }
        }
        //xSemaphoreGive( sema_RemainingMoisture );
      } else {
        log_i( "water level bad " );
        WaterPump0_off();
        PumpOffWait = esp_timer_get_time();
      }
    } else {
      /*
         pump goes on runs for X seconds then turn off, then wait PumpOffWaitTime before being allowed to energize again
      */
      if ( (esp_timer_get_time() - PumpOnTime) >= PumpRunTime )
      {
        log_i( "pump off " );
        WaterPump0_off(); // after 5 seconds turn pump off
        pumpOn = !pumpOn;
        PumpOffWait = esp_timer_get_time();
      }
    }
    // publish to MQTT every 5000000uS
    if ( (esp_timer_get_time() - TimePastPublish) >= TimeToPublish )
    {
      xQueueOverwrite( xQ_RemainingMoistureMQTT, (void *) &RemainingMoisture );// data for mqtt publish
      TimePastPublish = esp_timer_get_time(); // get next publish time
    }
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete( NULL );
}// end fDoMoistureDetector()
////
void MQTTkeepalive( void *pvParameters )
{
  sema_MQTT_KeepAlive   = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_MQTT_KeepAlive ); // found keep alive can mess with a publish, stop keep alive during publish
  MQTTclient.setKeepAlive( 90 ); // setting keep alive to 90 seconds makes for a very reliable connection, must be set before the 1st connection is made.
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 250; // 250mS
  for (;;)
  {
    //check for a is-connected and if the WiFi 'thinks' its connected, found checking on both is more realible than just a single check
    if ( (wifiClient.connected()) && (WiFi.status() == WL_CONNECTED) )
    {
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY ); // whiles MQTTlient.loop() is running no other mqtt operations should be in process
      MQTTclient.loop();
      xSemaphoreGive( sema_MQTT_KeepAlive );
    }
    else {
      log_i( "MQTT keep alive found MQTT status %s WiFi status %s", String(wifiClient.connected()), String(WiFi.status()) );
      if ( !(wifiClient.connected()) || !(WiFi.status() == WL_CONNECTED) )
      {
        connectToWiFi();
      }
      connectToMQTT();
    }
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete ( NULL );
}
////
void connectToMQTT()
{
  // create client ID from mac address
  byte mac[5];
  int count = 0;
  WiFi.macAddress(mac); // get mac address
  String clientID = String(mac[0]) + String(mac[4]);
  log_i( "connect to mqtt as client %s", clientID );
  while ( !MQTTclient.connected() )
  {
    MQTTclient.disconnect();
    MQTTclient.connect( clientID.c_str(), mqtt_username, mqtt_password );
    vTaskDelay( 250 );
    count++;
    if ( count == 5 )
    {
      ESP.restart();
    }
  }
  MQTTclient.setCallback( mqttCallback );
  MQTTclient.subscribe( topicOK );
}
////
void connectToWiFi()
{
  int TryCount = 0;
  while ( WiFi.status() != WL_CONNECTED )
  {
    TryCount++;
    WiFi.disconnect();
    WiFi.begin( SSID, PASSWORD );
    vTaskDelay( 4000 );
    if ( TryCount == 10 )
    {
      ESP.restart();
    }
  }
  WiFi.onEvent( WiFiEvent );
} // void connectToWiFi()
//////
void fparseMQTT( void *pvParameters )
{
  struct stu_message px_message;
  for (;;)
  {
    if ( xQueueReceive(xQ_Message, &px_message, portMAX_DELAY) == pdTRUE )
    {
      if ( px_message.topic == topicOK )
      {
        xSemaphoreTake( sema_mqttOK, portMAX_DELAY );
        mqttOK = 0; // clear mqtt ok count
        xSemaphoreGive( sema_mqttOK );
      }
      if ( !TimeSet )
      {
        String temp = "";
        temp = px_message.payload[0];
        temp += px_message.payload[1];
        temp += px_message.payload[2];
        temp += px_message.payload[3];
        int year =  temp.toInt();
        temp = "";
        temp = px_message.payload[5];
        temp += px_message.payload[6];
        int month =  temp.toInt();
        temp = "";
        temp = px_message.payload[8];
        temp += px_message.payload[9];
        int day =  temp.toInt();
        temp = "";
        temp = px_message.payload[11];
        temp += px_message.payload[12];
        int hour =  temp.toInt();
        temp = "";
        temp = px_message.payload[14];
        temp += px_message.payload[15];
        int min =  temp.toInt();
        rtc.setTime( 0, min, hour, day, month, year );
        log_i( "%s  ", rtc.getTime() );
        TimeSet = true;
      }
      // manual pump control
      //      if ( str_eTopic == topicPumpState )
      //      {
      //        if ( String(strPayload) == "off" )
      //        {
      //          WaterPump0_off();
      //          manualPumpOn = false;
      //        }
      //        if ( String(strPayload) == "on" )
      //        {
      //          WaterPump0_on();
      //          manualPumpOn = true;
      //        }
      //      }
    }
  } //for(;;)
  vTaskDelete ( NULL );
} // void fparseMQTT( void *pvParameters )
////
void loop() {}

Wow thats intense lol, i was thinking it was going to be much simpler lol. Thanks for sharing

1 Like

It can be much simpler. @Idahowalker 's code is very sophisticated, doing far more than you need, and so is not ideal for a beginner to learn from. But you did ask for an example code he had, so he provided it!

Your project, as you described it above, is very simple. So you can use very simple code. That means using delay() for timing. When your confidence and experience grow, you will begin to encounter the limitations of using delay(), but for now don't worry about them.

My recommendation would be don't waste time looking for existing code that does what you want. You won't find it. Don't waste time looking for code that's close to what you want. It might take longer to adapt it than it would to write it from scratch. And writing from scratch may help you learn faster too, because you will know and understand exactly what every line of code is for.

Start by writing a short, simple list of step-by-step instructions as though a human was to perform the task.

Then convert each step into code. We can help with that part of you get stuck.

This topic was automatically closed 180 days after the last reply. New replies are no longer allowed.