K-type thermocouple table
The problem I see is that a K-type thermocouple has a negative range up to -6mV.
If you omit the negative range, and use only the positive range , then it is 0.000V to 33..275mV
0.033V/4095=8.0586e-6 V (8.05uV)
So each count would be 8.05uV IF you COMPRESS THE FULL SCALE TO 0.033V/5.00V = 1/151th of 5V
This means you would need a divide by 151 voltage divider on the DAC output:
divide by 151 voltage divider
Vo = Vin* R2/(R1+R2)
Let Vo = 0.033mV = 0.000033V = 0.000033
Let Vin = 5.00V
Let R2 = 1000 ohms
then,
0.000033V = 5.00* 1000/(R1+1000)
0.000033V **5.00 1000 5.00 * 1000
------------ = ------ * ** ------------ = ------------
** 1 1 ****(R1+1000) **(R1+1000)
0.000033V 5.00 * 1000
**----------- = ** ------------
** 1 **(R1+1000)
Cross Multiply
0.000033__(R1+1000) = 5.001000__
0.000033__R1 + 10000.000033 __ = 1000*5.00
0.000033__*R1 + 0.033 = 5000__
0.000033__*R1 = 5000-__0.033
4,999.967
R1 = ------------
0.000033
**R1 = **151,514,151 ohms
Proof:
Vo = Vin* R2/(R1+R2)
Let Vo = 0.033mV = 0.000033V = 0.000033
Let Vin = 5.00V
Let R1 = 151514151
Let R2 = 1000 ohms
Vo = 5.00* 1000/(151514151**+1000)**
** = 5000/(151,515,151)
** Vo = 0.000033 V (0.033mV) (maximum K-type thermocouple voltage)
If I read the table correctly, 0.000 degrees = 0.397mV (0.397mV = 0.000397
0.000397/8.0586e-6 V = 49 DAC counts
So, given a voltage divider | where R1 = 151514151 ohms , 1 % , R2 = 1000 ohms , 1%,
and a DAC output of 49 counts (5V/4095= 0.001221/per count)
0.001221 V * 49=0.059829 V
0.059829/151 = 3.9621893926529688119092092602026e-4 V = 0.0003962189 V (~0.000397V = 0.397mV)