Hi all -
I know this is a complex subject and there is A LOT of discussion about the best practices. At the moment, I have an MPU-6050 hooked up to my device (I'm using an ESP-32, but I think those details might be irrelevant here), it is sending messages over OSC - but I would just like to convert the gyroscope readings (which I believe are measuring angular velocity?) to pitch, yaw, and roll - with a modicum of accuracy.
I know that there are very complex filters and paradigms for how this information can be processed - I know there are way better sensors available now - but I'd just like to use what I have to do something very basic, as a way of starting this learning process.
The code I cobbled together is below - if you can help, I would be greatly appreciative.
#include <WiFi.h>
#include <OSCMessage.h>
#include <WiFiUdp.h>
#include <Adafruit_MPU6050.h>
#include <Adafruit_Sensor.h>
#include <Wire.h>
Adafruit_MPU6050 mpu;
//network credentials
const char* ssid = "mynetwork";
const char* password = "mypassword";
WiFiUDP Udp;
const char *ip = "192.168.254.200"; // IP of the computer where you want to send the OSC message
const int port = 12345; // Port where the computer is listening for OSC messages
void setup(void) {
Serial.begin(115200);
WiFi.begin(ssid, password);
while (!Serial)
delay(10); // will pause Zero, Leonardo, etc until serial console opens
Serial.println("Adafruit MPU6050 test!");
// Try to initialize!
if (!mpu.begin()) {
Serial.println("Failed to find MPU6050 chip");
while (1) {
delay(10);
}
}
Serial.println("MPU6050 Found!");
mpu.setAccelerometerRange(MPU6050_RANGE_8_G);
Serial.print("Accelerometer range set to: ");
switch (mpu.getAccelerometerRange()) {
case MPU6050_RANGE_2_G:
Serial.println("+-2G");
break;
case MPU6050_RANGE_4_G:
Serial.println("+-4G");
break;
case MPU6050_RANGE_8_G:
Serial.println("+-8G");
break;
case MPU6050_RANGE_16_G:
Serial.println("+-16G");
break;
}
mpu.setGyroRange(MPU6050_RANGE_500_DEG);
Serial.print("Gyro range set to: ");
switch (mpu.getGyroRange()) {
case MPU6050_RANGE_250_DEG:
Serial.println("+- 250 deg/s");
break;
case MPU6050_RANGE_500_DEG:
Serial.println("+- 500 deg/s");
break;
case MPU6050_RANGE_1000_DEG:
Serial.println("+- 1000 deg/s");
break;
case MPU6050_RANGE_2000_DEG:
Serial.println("+- 2000 deg/s");
break;
}
mpu.setFilterBandwidth(MPU6050_BAND_5_HZ);
Serial.print("Filter bandwidth set to: ");
switch (mpu.getFilterBandwidth()) {
case MPU6050_BAND_260_HZ:
Serial.println("260 Hz");
break;
case MPU6050_BAND_184_HZ:
Serial.println("184 Hz");
break;
case MPU6050_BAND_94_HZ:
Serial.println("94 Hz");
break;
case MPU6050_BAND_44_HZ:
Serial.println("44 Hz");
break;
case MPU6050_BAND_21_HZ:
Serial.println("21 Hz");
break;
case MPU6050_BAND_10_HZ:
Serial.println("10 Hz");
break;
case MPU6050_BAND_5_HZ:
Serial.println("5 Hz");
break;
}
Serial.println("");
delay(100);
Udp.begin(12346);
}
void loop() {
/* Get new sensor events with the readings */
sensors_event_t a, g, temp;
mpu.getEvent(&a, &g, &temp);
OSCMessage msg("/valz"); // OSC address
msg.add(a.acceleration.x); // Adding argument
msg.add(a.acceleration.y); // Adding argument
msg.add(a.acceleration.z);
msg.add(g.gyro.x);
msg.add(g.gyro.y);
msg.add(g.gyro.z);
msg.add(temp.temperature); // Adding argument
Udp.beginPacket(ip, port); // Computer's IP and port
msg.send(Udp); // Send the message over UDP
Udp.endPacket(); // End the UDP packet
delay(20);
}