MPU6050 waiting for interrupt

Hello all!
I am running MPU 6050 example.

Every time after uploading the code the serial monitor it gets stuck at the point of ‘waiting for interrupt’, not sure how or when it is due to be triggered. Chip is wired up correctly with INT pin to 2 and the others all correct. Any help would be appreciated, thanks.

void setup() {
    // join I2C bus (I2Cdev library doesn't do this automatically)
    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
     //   Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

    
    Serial.begin(9600);
    while (!Serial); // wait for Leonardo enumeration, others continue immediately

    
    // initialize device
    Serial.println(F("Initializing I2C devices..."));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);

    // verify connection
    Serial.println(F("Testing device connections..."));
    Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

    // wait for ready
    Serial.println(F("\nSend any character to begin DMP programming and demo: "));
    while (Serial.available() && Serial.read()); // empty buffer
    while (!Serial.available());                 // wait for data
    while (Serial.available() && Serial.read()); // empty buffer again

    // load and configure the DMP
    Serial.println(F("Initializing DMP..."));
    devStatus = mpu.dmpInitialize();

    // supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

    // make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it's ready
        Serial.println(F("Enabling DMP..."));
        mpu.setDMPEnabled(true);

        // enable Arduino interrupt detection
        Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
        attachInterrupt(2, dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();

        // set our DMP Ready flag so the main loop() function knows it's okay to use it
        Serial.println(F("DMP ready! Waiting for first interrupt..."));
        dmpReady = true;

        // get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it's going to break, usually the code will be 1)
        Serial.print(F("DMP Initialization failed (code "));
        Serial.print(devStatus);
        Serial.println(F(")"));
    }

    // configure LED for output
    pinMode(LED_PIN, OUTPUT);
}



// ================================================================
// ===                    MAIN PROGRAM LOOP                     ===
// ================================================================

void loop() {
    // if programming failed, don't try to do anything
    if (!dmpReady) return;

    // wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
        
    }

    // reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

    // get current FIFO count
    fifoCount = mpu.getFIFOCount();

    // check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        Serial.println(F("FIFO overflow!"));

    // otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

        // read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
        
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;

        #ifdef OUTPUT_READABLE_QUATERNION
            // display quaternion values in easy matrix form: w x y z
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            Serial.print("quat\t");
            Serial.print(q.w);
            Serial.print("\t");
            Serial.print(q.x);
            Serial.print("\t");
            Serial.print(q.y);
            Serial.print("\t");
            Serial.println(q.z);
        #endif

        #ifdef OUTPUT_READABLE_EULER
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetEuler(euler, &q);
            Serial.print("euler\t");
            Serial.print(euler[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(euler[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(euler[2] * 180/M_PI);
        #endif

        #ifdef OUTPUT_READABLE_YAWPITCHROLL
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
            Serial.print("ypr\t");
            Serial.print(ypr[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(ypr[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(ypr[2] * 180/M_PI);
        #endif

        #ifdef OUTPUT_READABLE_REALACCEL
            // display real acceleration, adjusted to remove gravity
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            Serial.print("areal\t");
            Serial.print(aaReal.x);
            Serial.print("\t");
            Serial.print(aaReal.y);
            Serial.print("\t");
            Serial.println(aaReal.z);
        #endif

        #ifdef OUTPUT_READABLE_WORLDACCEL
            // display initial world-frame acceleration, adjusted to remove gravity
            // and rotated based on known orientation from quaternion
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
            Serial.print("aworld\t");
            Serial.print(aaWorld.x);
            Serial.print("\t");
            Serial.print(aaWorld.y);
            Serial.print("\t");
            Serial.println(aaWorld.z);
        #endif
    
        #ifdef OUTPUT_TEAPOT
            // display quaternion values in InvenSense Teapot demo format:
            teapotPacket[2] = fifoBuffer[0];
            teapotPacket[3] = fifoBuffer[1];
            teapotPacket[4] = fifoBuffer[4];
            teapotPacket[5] = fifoBuffer[5];
            teapotPacket[6] = fifoBuffer[8];
            teapotPacket[7] = fifoBuffer[9];
            teapotPacket[8] = fifoBuffer[12];
            teapotPacket[9] = fifoBuffer[13];
            Serial.write(teapotPacket, 14);
            teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
        #endif

        // blink LED to indicate activity
        blinkState = !blinkState;
        digitalWrite(LED_PIN, blinkState);
    }
}

Are we missing something? Like, all the code?

INTERRUPT_PIN = 2; pinMode(INTERRUPT_PIN, INPUT); INT on mpu6050 should be jumpers to digital pin 2 on the UNO

This is what you are having problems with

No, not seeing all the code is what I'm having a problem with.

The code jaddion82052 is using is from the example code for the MPU6050 I recognize it from the portion he posted.

I’ve rewritten the code to for my purposes to provide me with functionality for a balancing robot (Video link below). I have resolved issues I faces with the code from the MPU6050 examples. I just checked this code out to be sure it worked with my testing MPU6050. It uses the DMP and the FIFO buffer to provide Yaw, Pitch and Roll calculations every 10 milliseconds. The Display to the serial port is further delayed to only show a snapshot every 100 milliseconds.

Balancing Bot using this very portion of code

MPU6050_Test_Code.ino (9.57 KB)

Sorry It initially went over the 9000 character limit so I cut a few lines from the top.

#include "I2Cdev.h"
#include "MPU6050_6Axis_MotionApps20.h"

#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
    #include "Wire.h"
#endif

MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high


#define OUTPUT_READABLE_YAWPITCHROLL
#define INTERRUPT_PIN 2  // use pin 2 on Arduino Uno & most boards
#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
bool blinkState = false;

// MPU control/status vars
bool dmpReady = false;  // set true if DMP init was successful
uint8_t mpuIntStatus;   // holds actual interrupt status byte from MPU
uint8_t devStatus;      // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize;    // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount;     // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q;           // [w, x, y, z]         quaternion container
VectorInt16 aa;         // [x, y, z]            accel sensor measurements
VectorInt16 aaReal;     // [x, y, z]            gravity-free accel sensor measurements
VectorInt16 aaWorld;    // [x, y, z]            world-frame accel sensor measurements
VectorFloat gravity;    // [x, y, z]            gravity vector
float euler[3];         // [psi, theta, phi]    Euler angle container
float ypr[3];           // [yaw, pitch, roll]   yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '

That’s everything minus a few comments., 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, ‘\r’, ‘\n’ };

volatile bool mpuInterrupt = false;     // indicates whether MPU interrupt pin has gone high
void () {
   mpuInterrupt = true;
}

void setup() {
   
   #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
       Wire.begin();
   #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
       Fastwire::setup(400, true);
   #endif
   Serial.begin(9600);
   while (!Serial); // wait for Leonardo enumeration, others continue immediately

Serial.println(F(“Initializing I2C devices…”));
   mpu.initialize();
   pinMode(INTERRUPT_PIN, INPUT);

Serial.println(F(“Testing device connections…”));
   Serial.println(mpu.testConnection() ? F(“MPU6050 connection successful”) : F(“MPU6050 connection failed”));

// wait for ready
   Serial.println(F("\nSend any character to begin DMP programming and demo: "));
   while (Serial.available() && Serial.read()); // empty buffer
   while (!Serial.available());                 // wait for data
   while (Serial.available() && Serial.read()); // empty buffer again

// load and configure the DMP
   Serial.println(F(“Initializing DMP…”));
   devStatus = mpu.dmpInitialize();

// supply your own gyro offsets here, scaled for min sensitivity
   mpu.setXGyroOffset(220);
   mpu.setYGyroOffset(76);
   mpu.setZGyroOffset(-85);
   mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

// make sure it worked (returns 0 if so)
   if (devStatus == 0) {
       // turn on the DMP, now that it’s ready
       Serial.println(F(“Enabling DMP…”));
       mpu.setDMPEnabled(true);

// enable Arduino interrupt detection
       Serial.println(F(“Enabling interrupt detection (Arduino external interrupt 0)…”));
       attachInterrupt(2, dmpDataReady, RISING);
       mpuIntStatus = mpu.getIntStatus();

// set our DMP Ready flag so the main loop() function knows it’s okay to use it
       Serial.println(F(“DMP ready! Waiting for first interrupt…”));
       dmpReady = true;

// get expected DMP packet size for later comparison
       packetSize = mpu.dmpGetFIFOPacketSize();
   } else {
       // ERROR!
       // 1 = initial memory load failed
       // 2 = DMP configuration updates failed
       // (if it’s going to break, usually the code will be 1)
       Serial.print(F(“DMP Initialization failed (code “));
       Serial.print(devStatus);
       Serial.println(F(”)”));
   }

// configure LED for output
   pinMode(LED_PIN, OUTPUT);
}

void loop() {
   // if programming failed, don’t try to do anything
   if (!dmpReady) return;

// wait for MPU interrupt or extra packet(s) available
   while (!mpuInterrupt && fifoCount < packetSize) {
       
   }

// reset interrupt flag and get INT_STATUS byte
   mpuInterrupt = false;
   mpuIntStatus = mpu.getIntStatus();

// get current FIFO count
   fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too inefficient)
   if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
       // reset so we can continue cleanly
       mpu.resetFIFO();
       Serial.println(F(“FIFO overflow!”));

} else if (mpuIntStatus & 0x02) {
       
       while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
       mpu.getFIFOBytes(fifoBuffer, packetSize);
       
       fifoCount -= packetSize;

#ifdef OUTPUT_READABLE_QUATERNION
           // display quaternion values in easy matrix form: w x y z
           mpu.dmpGetQuaternion(&q, fifoBuffer);
           Serial.print(“quat\t”);
           Serial.print(q.w);
           Serial.print("\t");
           Serial.print(q.x);
           Serial.print("\t");
           Serial.print(q.y);
           Serial.print("\t");
           Serial.println(q.z);
       #endif

#ifdef OUTPUT_READABLE_EULER
           // display Euler angles in degrees
           mpu.dmpGetQuaternion(&q, fifoBuffer);
           mpu.dmpGetEuler(euler, &q);
           Serial.print(“euler\t”);
           Serial.print(euler[0] * 180/M_PI);
           Serial.print("\t");
           Serial.print(euler[1] * 180/M_PI);
           Serial.print("\t");
           Serial.println(euler[2] * 180/M_PI);
       #endif

#ifdef OUTPUT_READABLE_YAWPITCHROLL
           // display Euler angles in degrees
           mpu.dmpGetQuaternion(&q, fifoBuffer);
           mpu.dmpGetGravity(&gravity, &q);
           mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
           Serial.print(“ypr\t”);
           Serial.print(ypr[0] * 180/M_PI);
           Serial.print("\t");
           Serial.print(ypr[1] * 180/M_PI);
           Serial.print("\t");
           Serial.println(ypr[2] * 180/M_PI);
       #endif

#ifdef OUTPUT_READABLE_REALACCEL
           // display real acceleration, adjusted to remove gravity
           mpu.dmpGetQuaternion(&q, fifoBuffer);
           mpu.dmpGetAccel(&aa, fifoBuffer);
           mpu.dmpGetGravity(&gravity, &q);
           mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
           Serial.print(“areal\t”);
           Serial.print(aaReal.x);
           Serial.print("\t");
           Serial.print(aaReal.y);
           Serial.print("\t");
           Serial.println(aaReal.z);
       #endif

#ifdef OUTPUT_READABLE_WORLDACCEL
           // display initial world-frame acceleration, adjusted to remove gravity
           // and rotated based on known orientation from quaternion
           mpu.dmpGetQuaternion(&q, fifoBuffer);
           mpu.dmpGetAccel(&aa, fifoBuffer);
           mpu.dmpGetGravity(&gravity, &q);
           mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
           mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
           Serial.print(“aworld\t”);
           Serial.print(aaWorld.x);
           Serial.print("\t");
           Serial.print(aaWorld.y);
           Serial.print("\t");
           Serial.println(aaWorld.z);
       #endif
   
       #ifdef OUTPUT_TEAPOT
           // display quaternion values in InvenSense Teapot demo format:
           teapotPacket[2] = fifoBuffer[0];
           teapotPacket[3] = fifoBuffer[1];
           teapotPacket[4] = fifoBuffer[4];
           teapotPacket[5] = fifoBuffer[5];
           teapotPacket[6] = fifoBuffer[8];
           teapotPacket[7] = fifoBuffer[9];
           teapotPacket[8] = fifoBuffer[12];
           teapotPacket[9] = fifoBuffer[13];
           Serial.write(teapotPacket, 14);
           teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
       #endif

// blink LED to indicate activity
       blinkState = !blinkState;
       digitalWrite(LED_PIN, blinkState);
   }
}


That's everything minus a few comments.

jaddion82052:
Hello all!
I am running MPU 6050 example.

Every time after uploading the code the serial monitor it gets stuck at the point of ‘waiting for interrupt’, not sure how or when it is due to be triggered. Chip is wired up correctly with INT pin to 2 and the others all correct. Any help would be appreciated, thanks.

void setup() {

// join I2C bus (I2Cdev library doesn’t do this automatically)
    #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
        Wire.begin();
    //  Wire.setClock(400000); // 400kHz I2C clock. Comment this line if having compilation difficulties
    #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
        Fastwire::setup(400, true);
    #endif

Serial.begin(9600);
    while (!Serial); // wait for Leonardo enumeration, others continue immediately

// initialize device
    Serial.println(F(“Initializing I2C devices…”));
    mpu.initialize();
    pinMode(INTERRUPT_PIN, INPUT);

// verify connection
    Serial.println(F(“Testing device connections…”));
    Serial.println(mpu.testConnection() ? F(“MPU6050 connection successful”) : F(“MPU6050 connection failed”));

// wait for ready
    Serial.println(F("\nSend any character to begin DMP programming and demo: "));
    while (Serial.available() && Serial.read()); // empty buffer
    while (!Serial.available());                // wait for data
    while (Serial.available() && Serial.read()); // empty buffer again

// load and configure the DMP
    Serial.println(F(“Initializing DMP…”));
    devStatus = mpu.dmpInitialize();

// supply your own gyro offsets here, scaled for min sensitivity
    mpu.setXGyroOffset(220);
    mpu.setYGyroOffset(76);
    mpu.setZGyroOffset(-85);
    mpu.setZAccelOffset(1788); // 1688 factory default for my test chip

// make sure it worked (returns 0 if so)
    if (devStatus == 0) {
        // turn on the DMP, now that it’s ready
        Serial.println(F(“Enabling DMP…”));
        mpu.setDMPEnabled(true);

// enable Arduino interrupt detection
        Serial.println(F(“Enabling interrupt detection (Arduino external interrupt 0)…”));
        attachInterrupt(2, dmpDataReady, RISING);
        mpuIntStatus = mpu.getIntStatus();

// set our DMP Ready flag so the main loop() function knows it’s okay to use it
        Serial.println(F(“DMP ready! Waiting for first interrupt…”));
        dmpReady = true;

// get expected DMP packet size for later comparison
        packetSize = mpu.dmpGetFIFOPacketSize();
    } else {
        // ERROR!
        // 1 = initial memory load failed
        // 2 = DMP configuration updates failed
        // (if it’s going to break, usually the code will be 1)
        Serial.print(F(“DMP Initialization failed (code “));
        Serial.print(devStatus);
        Serial.println(F(”)”));
    }

// configure LED for output
    pinMode(LED_PIN, OUTPUT);
}

// ================================================================
// ===                    MAIN PROGRAM LOOP                    ===
// ================================================================

void loop() {
    // if programming failed, don’t try to do anything
    if (!dmpReady) return;

// wait for MPU interrupt or extra packet(s) available
    while (!mpuInterrupt && fifoCount < packetSize) {
       
    }

// reset interrupt flag and get INT_STATUS byte
    mpuInterrupt = false;
    mpuIntStatus = mpu.getIntStatus();

// get current FIFO count
    fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too inefficient)
    if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
        // reset so we can continue cleanly
        mpu.resetFIFO();
        Serial.println(F(“FIFO overflow!”));

// otherwise, check for DMP data ready interrupt (this should happen frequently)
    } else if (mpuIntStatus & 0x02) {
        // wait for correct available data length, should be a VERY short wait
        while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

// read a packet from FIFO
        mpu.getFIFOBytes(fifoBuffer, packetSize);
       
        // track FIFO count here in case there is > 1 packet available
        // (this lets us immediately read more without waiting for an interrupt)
        fifoCount -= packetSize;

#ifdef OUTPUT_READABLE_QUATERNION
            // display quaternion values in easy matrix form: w x y z
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            Serial.print(“quat\t”);
            Serial.print(q.w);
            Serial.print("\t");
            Serial.print(q.x);
            Serial.print("\t");
            Serial.print(q.y);
            Serial.print("\t");
            Serial.println(q.z);
        #endif

#ifdef OUTPUT_READABLE_EULER
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetEuler(euler, &q);
            Serial.print(“euler\t”);
            Serial.print(euler[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(euler[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(euler[2] * 180/M_PI);
        #endif

#ifdef OUTPUT_READABLE_YAWPITCHROLL
            // display Euler angles in degrees
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
            Serial.print(“ypr\t”);
            Serial.print(ypr[0] * 180/M_PI);
            Serial.print("\t");
            Serial.print(ypr[1] * 180/M_PI);
            Serial.print("\t");
            Serial.println(ypr[2] * 180/M_PI);
        #endif

#ifdef OUTPUT_READABLE_REALACCEL
            // display real acceleration, adjusted to remove gravity
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            Serial.print(“areal\t”);
            Serial.print(aaReal.x);
            Serial.print("\t");
            Serial.print(aaReal.y);
            Serial.print("\t");
            Serial.println(aaReal.z);
        #endif

#ifdef OUTPUT_READABLE_WORLDACCEL
            // display initial world-frame acceleration, adjusted to remove gravity
            // and rotated based on known orientation from quaternion
            mpu.dmpGetQuaternion(&q, fifoBuffer);
            mpu.dmpGetAccel(&aa, fifoBuffer);
            mpu.dmpGetGravity(&gravity, &q);
            mpu.dmpGetLinearAccel(&aaReal, &aa, &gravity);
            mpu.dmpGetLinearAccelInWorld(&aaWorld, &aaReal, &q);
            Serial.print(“aworld\t”);
            Serial.print(aaWorld.x);
            Serial.print("\t");
            Serial.print(aaWorld.y);
            Serial.print("\t");
            Serial.println(aaWorld.z);
        #endif
   
        #ifdef OUTPUT_TEAPOT
            // display quaternion values in InvenSense Teapot demo format:
            teapotPacket[2] = fifoBuffer[0];
            teapotPacket[3] = fifoBuffer[1];
            teapotPacket[4] = fifoBuffer[4];
            teapotPacket[5] = fifoBuffer[5];
            teapotPacket[6] = fifoBuffer[8];
            teapotPacket[7] = fifoBuffer[9];
            teapotPacket[8] = fifoBuffer[12];
            teapotPacket[9] = fifoBuffer[13];
            Serial.write(teapotPacket, 14);
            teapotPacket[11]++; // packetCount, loops at 0xFF on purpose
        #endif

// blink LED to indicate activity
        blinkState = !blinkState;
        digitalWrite(LED_PIN, blinkState);
    }
}

maybe u can re enable interrupt when interrupt being false/0

Just try add this line void loop() ::

while (!mpuInterrupt && fifoCount < packetSize) {

mpuInterrupt = true;

}

        attachInterrupt(2, dmpDataReady, RISING);

That's a mistake. The interrupt number for Pin 2 is zero, not two.

johnwasser: That's a mistake. The interrupt number for Pin 2 is zero, not two.

Thid is a Revived post from back in June I doubt the original author is even listening Great catch johnwasser :) I missed that back then Z