#include <EEPROM.h>
// counter button definition
#define button1 A0
#define button2 A1
// shift register pin definitions
#define clockPin 7 // clock pin
#define dataPin 6 // data pin
// common pins of the four digits definitions
#define Dig1 5
#define Dig2 4
#define Dig3 3
#define Dig4 2
// variable declarations
byte current_digit;
int count = 0;
const int COUNTER_EEPROM_ADDRESS = 0;
void disp(byte number, bool dec_point = 0);
void setup()
{
pinMode(button1, INPUT_PULLUP);
pinMode(button2, INPUT_PULLUP);
pinMode(Dig1, OUTPUT);
pinMode(Dig2, OUTPUT);
pinMode(Dig3, OUTPUT);
pinMode(Dig4, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);
disp_off(); // turn off the display
// Timer1 module overflow interrupt configuration
TCCR1A = 0;
TCCR1B = 1; // enable Timer1 with prescaler = 1 ( 16 ticks each 1 µs)
TCNT1 = 0; // set Timer1 preload value to 0 (reset)
TIMSK1 = 1; // enable Timer1 overflow interrupt
// Get the latest count from EEPROM
EEPROM.get(COUNTER_EEPROM_ADDRESS, count);
if (count > 9999 || count < 0)
count = 0;
}
ISR(TIMER1_OVF_vect) // Timer1 interrupt service routine (ISR)
{
disp_off(); // turn off the display
switch (current_digit)
{
case 1:
disp(count / 1000); // prepare to display digit 1 (most left)
digitalWrite(Dig1, LOW); // turn on digit 1
break;
case 2:
disp( (count / 100) % 10 ); // prepare to display digit 2
digitalWrite(Dig2, LOW); // turn on digit 2
break;
case 3:
disp( (count / 10) % 10 ); // prepare to display digit 3
digitalWrite(Dig3, LOW); // turn on digit 3
break;
case 4:
disp(count % 10); // prepare to display digit 4 (most right)
digitalWrite(Dig4, LOW); // turn on digit 4
}
current_digit = (current_digit % 4) + 1;
}
// main loop
void loop()
{
if (digitalRead(button1) == 0)
{
count++; // increment 'count' by 1
if (count > 9999 || count < 0)
count = 0;
EEPROM.put(COUNTER_EEPROM_ADDRESS, count);
delay(200); // wait 200 milliseconds
}
else if (digitalRead(button2) == 0)
{
count--; // increment 'count' by 1
if (count > 9999 || count < 0)
count = 0;
EEPROM.put(COUNTER_EEPROM_ADDRESS, count);
delay(200); // wait 200 milliseconds
}
}
void disp(byte number, bool dec_point)
{
switch (number)
{
case 0: // print 0
shiftOut(dataPin, clockPin, MSBFIRST, 252 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
break;
case 1: // print 1
shiftOut(dataPin, clockPin, MSBFIRST, 96 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
break;
case 2: // print 2
shiftOut(dataPin, clockPin, MSBFIRST, 218 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
break;
case 3: // print 3
shiftOut(dataPin, clockPin, MSBFIRST, 242 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
break;
case 4: // print 4
shiftOut(dataPin, clockPin, MSBFIRST, 102 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
break;
case 5: // print 5
shiftOut(dataPin, clockPin, MSBFIRST, 182 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
break;
case 6: // print 6
shiftOut(dataPin, clockPin, MSBFIRST, 190 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
break;
case 7: // print 7
shiftOut(dataPin, clockPin, MSBFIRST, 224 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
break;
case 8: // print 8
shiftOut(dataPin, clockPin, MSBFIRST, 254 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
break;
case 9: // print 9
shiftOut(dataPin, clockPin, MSBFIRST, 246 | !dec_point);
digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);
}
}
void disp_off()
{
digitalWrite(Dig1, HIGH);
digitalWrite(Dig2, HIGH);
digitalWrite(Dig3, HIGH);
digitalWrite(Dig4, HIGH);
}
// end of code.