Hey there. I'm in the competance range where I know enough to be dangerous to myself, but not enough to get out of a problem. We're wanting to do recordings of various factors in the project here and output them to serial. Individually everything works, but it seems we can't get it to function properly when we put all of the parts together. I think it has something to do with my I2C code. I was hoping someone would be able to help figure this out, and maybe help give some advice on how to make the code more efficient. My programming prior to this is limited to Qbasic, and TI graphing calculators. Thanks!
```cpp
#include <DFRobot_LIS2DW12.h>
#include <LiquidCrystal_I2C.h>
#include <RunningAverage.h>
#include <SparkFun_Qwiic_Scale_NAU7802_Arduino_Library.h>
NAU7802 myScale; // Create instance of the NAU7802 class
//Accelerometer
//When using I2C communication, use the following program to construct an object by DFRobot_LIS2DW12_I2C
/*!
* @brief Constructor
* @param pWire I2c controller
* @param addr I2C address(0x18/0x19)
*/
DFRobot_LIS2DW12_I2C acce(&Wire,0x18);
float x;
float y;
float z;
float pitch;
float roll;
//Tachometer
// Pin Definitions
const byte irSensorPin = 3; // IR sensor connected to pin 18 (interrupt 5 on Mega)
// Constants
const byte teethPerRevolution = 20;
const unsigned long measurementInterval = 1000; // 1 second
// Variables
volatile unsigned int pulseCount = 0;
unsigned long lastMeasurementTime = 0;
float rpm;
//Flow Meter and Pressure sensor
/*
Setup the pressure sensor
Define the number of samples to keep track of. The higher the number, the
more the readings will be smoothed, but the slower the output will respond to
the input. Using a constant rather than a normal variable lets us use this
value to determine the size of the readings array.
*/
const int numReadings = 100;
int readings[numReadings]; // the readings from the analog input
int readIndex = 0; // the index of the current reading
int total = 0; // the running total
int average = 0; // the average
float Press_cal = 9.18; // Pressure sensor calibration number
int PressureSensor = A0;
/*
Set up display
*/
LiquidCrystal_I2C lcd(0x27,20,4);
//Use 5V power and ground as well as SDA and SCL
/*
Liquid flow rate sensor -DIYhacking.com Arvind Sanjeev
Measure the liquid/water flow rate using this code.
Connect Vcc and Gnd of sensor to arduino, and the
signal line to arduino digital pin 2.
*/
byte statusLed = 13;
byte sensorInterrupt = 0; // 0 = digital pin 2
byte sensorPin = 2;
// The hall-effect flow sensor outputs approximately 24.98 pulses per second per
// GPM of flow.
float calibrationFactor = 24.98;
volatile byte pulseCountflow;
float flowRate;
unsigned int flowMilliLitres;
float totalMilliLitres;
unsigned long oldTime;
//Setup Loadcell
//Set up Running Average
RunningAverage myRA(16);
// Create instance of the NAU7802 class
float weight;
void setup(void){
Serial.begin(9600);
//Set up LCD Display
lcd.init();
lcd.clear();
lcd.backlight();
lcd.setCursor(0,0);
lcd.print("Flow: ");
lcd.setCursor(0, 1);
lcd.print("Tension: ");
lcd.setCursor(0, 2);
lcd.print("Pitch: ");
lcd.setCursor(0, 3);
lcd.print("Speed: ");
//Accelerometer
x = 0;
y = 0;
z = 0;
pitch = 0;
roll = 0;
while(!acce.begin()){
Serial.println("Communication failed, check the connection and I2C address setting when using I2C communication.");
delay(1000);
}
Serial.print("chip id : ");
Serial.println(acce.getID(),HEX);
//Chip soft reset
acce.softReset();
//Set whether to collect data continuously
acce.continRefresh(true);
acce.setDataRate(DFRobot_LIS2DW12::eRate_50hz);
acce.setRange(DFRobot_LIS2DW12::e2_g);
acce.setFilterPath(DFRobot_LIS2DW12::eLPF);
acce.setFilterBandwidth(DFRobot_LIS2DW12::eRateDiv_4);
acce.setPowerMode(DFRobot_LIS2DW12::eContLowPwrLowNoise2_14bit);
delay(100);
//Tachometer
pinMode(irSensorPin, INPUT_PULLUP); // Pull-up if your IR sensor has open-collector output
attachInterrupt(digitalPinToInterrupt(irSensorPin), countPulse, FALLING); // Trigger on falling edge
pinMode(11,OUTPUT);
digitalWrite(11,HIGH);
float rpm = 0.0;
//Flowmeter and Pressure Sensor
//Set up Pressure Sensor
// initialize all the readings to 0:
for (int thisReading = 0; thisReading < numReadings; thisReading++) {
readings[thisReading] = 0;
}
// Set up the status LED line as an output
pinMode(statusLed, OUTPUT);
digitalWrite(statusLed, HIGH); // We have an active-low LED attached
pinMode(sensorPin, INPUT);
digitalWrite(sensorPin, HIGH);
pulseCountflow = 0;
flowRate = 0.0;
flowMilliLitres = 0;
totalMilliLitres = 0;
oldTime = 0;
// The Hall-effect sensor is connected to pin 2 which uses interrupt 0.
// Configured to trigger on a FALLING state change (transition from HIGH
// state to LOW state)
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
//Load Cell
//Wire.begin(); // Join I2C bus
float weight = 0.0;
//if (!myScale.begin()) {
// Serial.println("Scale not detected. Check wiring. Freezing...");
// while (1); // Freeze if no connection
// }
Serial.println("Scale detected!");
// Optional: set up the scale
myScale.setGain(128); // Set gain (options: 1, 2, 4, 8, 16, 32, 64, 128)
myScale.calibrateAFE(); // Internal calibration
}
void loop(void){
//Accelerometer
//Request a measurement under single data conversion on demand mode
//acce.demandData();
//The mearsurement range is ±2g,±4g,±8g or ±16g, set by the setRange() function.
//Read the acceleration values
x = acce.readAccX();
y = acce.readAccY();
z = acce.readAccZ();
//Calculate pitch and roll
roll = atan2(y , z) * 57.3;
pitch = atan2((- x) , sqrt(y * y + z * z)) * 57.3;
//Tachometer
unsigned long currentTime = millis();
if (currentTime - lastMeasurementTime >= measurementInterval) {
noInterrupts(); // Prevent pulseCount from being updated while we're reading it
unsigned int pulses = pulseCount;
pulseCount = 0;
interrupts();
float revolutions = pulses / float(teethPerRevolution);
float rpm = revolutions * 60.0;
lastMeasurementTime = currentTime;
}
//Flow Meter
// subtract the last reading:
total = total - readings[readIndex];
// read from the sensor:
readings[readIndex] = ((analogRead(PressureSensor)-86)/Press_cal);
// add the reading to the total:
total = total + readings[readIndex];
// advance to the next position in the array:
readIndex = readIndex + 1;
// if we're at the end of the array...
if (readIndex >= numReadings) {
// ...wrap around to the beginning:
readIndex = 0;
}
// calculate the average:
average = total / numReadings;
// send it to the computer as ASCII digits
if((millis() - oldTime) > 1000) // Only process counters once per second
{
// Disable the interrupt while calculating flow rate and sending the value to
// the host
detachInterrupt(sensorInterrupt);
// Because this loop may not complete in exactly 1 second intervals we calculate
// the number of milliseconds that have passed since the last execution and use
// that to scale the output. We also apply the calibrationFactor to scale the output
// based on the number of pulses per second per units of measure (litres/minute in
// this case) coming from the sensor.
flowRate = ((1000.0 / (millis() - oldTime)) * pulseCountflow) / calibrationFactor;
// Note the time this processing pass was executed. Note that because we've
// disabled interrupts the millis() function won't actually be incrementing right
// at this point, but it will still return the value it was set to just before
// interrupts went away.
oldTime = millis();
// Divide the flow rate in litres/minute by 60 to determine how many litres have
// passed through the sensor in this 1 second interval, then multiply by 1000 to
// convert to millilitres.
flowMilliLitres = (flowRate / 60)*100;
// Add the millilitres passed in this second to the cumulative total
totalMilliLitres += flowMilliLitres;
unsigned int frac;
// Reset the pulse counter so we can start incrementing again
pulseCountflow = 0;
// Enable the interrupt again now that we've finished sending output
attachInterrupt(sensorInterrupt, pulseCounter, FALLING);
}
//Load Cell
if (myScale.available()) {
float weight = myScale.getWeight(); // If you've calibrated, get weight in grams
}
//Display Values and output to Cereal haha
lcd.setCursor(9, 0);
lcd.print(flowRate);
lcd.print(" ");
lcd.setCursor(9, 1);
lcd.print(weight);
lcd.print(" ");
lcd.setCursor(9, 2);
lcd.print(pitch);
lcd.print(" ");
lcd.setCursor(9, 3);
lcd.print(rpm);
lcd.print(" ");
Serial.print(average);
Serial.print(",");
Serial.print(flowRate);
Serial.print(",");
Serial.print(rpm);
Serial.print(",");
Serial.print(weight);
Serial.print(",");
Serial.print(pitch);
Serial.print(",");
Serial.print(roll);
Serial.println(",");
delay(250);
}
//Interrupt routines
//Tachometer
void countPulse() {
pulseCount++;
}
//Flow Meter
void pulseCounter()
{
// Increment the pulse counter
pulseCountflow++;
}