Sound sensor + led strip combination

Hello! I hope someone will be able to help me.

I am trying to make a sound/volume visualizer with a WS2812b LED strip. I am using a 3-pin sound sensor module to take sound as input and connected the LED strip as shown in the attachments included. I tried to combine a code I found online of sound detecting and including the adafruit neopixel library's fill function, yet nothing is happening. I put the person's original algorithm as // comments for reference. I am a beginner so if someone can let me know of anything missing, I would really appreciate it.

Here is my code;

include

define LED_PIN 6

define LED_COUNT 60

// NeoPixel brightness, 0 (min) to 255 (max)

define BRIGHTNESS 50 // Set BRIGHTNESS to about 1/5 (max = 255)

Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRBW + NEO_KHZ800); int threshold = 200; //Set minimum threshold for LED lit int volume = 0;

void setup() {

//here is an input for sound sensor pinMode(A0, INPUT);

//here we are setting up all pins as an outputs for LEDs // for(int z = 0; z < 10; z++){ // pinMode(z, OUTPUT); // }

strip.begin(); // INITIALIZE NeoPixel strip object (REQUIRED) strip.show(); // Turn OFF all pixels ASAP strip.setBrightness(BRIGHTNESS);

}

void loop() {

//here we are storing the volume value volume = analogRead(A0);

//max value for analog read is 1023 but it must be very very loud to reach this value //so I lower it down in map function to 700 //mapping volume value to make it easier to turn LEDs on // volume = map(volume, 0, 700, 0, 10);

//for loop to turn on or off all LEDs //thanks to this loop code for this project is very short //we are going through all pins where we have LEDs and checking if the volume is //bigger then pin number (that's why we are maping the volume)

for(int a = 0; a < LED_COUNT; a++){

//if it is bigger we can turn on the LED if(volume >= threshold) { //digitalWrite(a, HIGH); strip.fill(strip.Color(255,204,255), 0, a); }

//if it is smaller we can turn the LED off else { //digitalWrite(a, LOW); strip.clear(); }

}

}

Screen Shot 2021-02-25 at 12.16.47 AM.png|1372x900

Screen Shot 2021-02-25 at 12.15.12 AM.png|1620x892

Here is my code for detecting sounds, converting the sound to various sound levels, depending on frequency, and lighting a LED strip.

#include "sdkconfig.h"
#include "esp32/ulp.h"
#include "driver/rtc_io.h"
#include "esp_system.h" //This inclusion configures the peripherals in the ESP system.
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/timers.h"
#include "freertos/event_groups.h"
#include 
#include "AudioAnalyzer.h"
////
/* define event group and event bits */
EventGroupHandle_t eg;
#define evtDo_AudioReadFreq       ( 1 << 0 ) // 1
////
TickType_t xTicksToWait0 = 0;
////
QueueHandle_t xQ_LED_Info;
////
const int NeoPixelPin = 26;
const int LED_COUNT = 24; //total number of leds in the strip
const int NOISE = 0; // noise that you want to chop off
const int SEG = 6; // how many parts you want to separate the led strip into
const int Priority4 = 4;
const int TaskStack40K = 40000;
const int TaskCore1  = 1;
const int TaskCore0 = 0;
const int AudioSampleSize = 6;
const int Brightness = 180;
const int A_D_ConversionBits = 4096; // arduino use 1024, ESP32 use 4096
const float LED0_Multiplier = 2.0;
////
Analyzer Audio = Analyzer( 5, 15, 36 );//Strobe pin ->15  RST pin ->2 Analog Pin ->36
// When we setup the NeoPixel library, we tell it how many pixels, and which pin to use to send signals.
Adafruit_NeoPixel leds = Adafruit_NeoPixel( LED_COUNT, NeoPixelPin, NEO_GRB + NEO_KHZ800 );
////
int FreqVal[7];//create an array to store the value of different freq
////
void ULP_BLINK_RUN(uint32_t us);
////
void setup()
{
  ULP_BLINK_RUN(100000);
  eg = xEventGroupCreate();
  Audio.Init(); // start the audio analyzer
  leds.begin(); // Call this to start up the LED strip.
  clearLEDs();  // This function, defined below, de-energizes all LEDs...
  leds.show();  // ...but the LEDs don't actually update until you call this.
  ////
  xQ_LED_Info = xQueueCreate ( 1, sizeof(FreqVal) );
  //////////////////////////////////////////////////////////////////////////////////////////////
  xTaskCreatePinnedToCore( fDo_AudioReadFreq, "fDo_ AudioReadFreq", TaskStack40K, NULL, Priority4, NULL, TaskCore1 ); //assigned to core
  xTaskCreatePinnedToCore( fDo_LEDs, "fDo_ LEDs", TaskStack40K, NULL, Priority4, NULL, TaskCore0 ); //assigned to core
  xEventGroupSetBits( eg, evtDo_AudioReadFreq );
} // setup()
////
void loop() {} // void loop
////
void fDo_LEDs( void *pvParameters )
{
  int iFreqVal[7];
  int j;
  leds.setBrightness( Brightness ); //  1 = min brightness (off), 255 = max brightness.
  for (;;)
  {
    if (xQueueReceive( xQ_LED_Info, &iFreqVal,  portMAX_DELAY) == pdTRUE)
    {
      j = 0;
      //assign different values for different parts of the led strip
      for (j = 0; j < LED_COUNT; j++)
      {
        if ( (0 <= j) && (j < (LED_COUNT / SEG)) )
        {
          set(j, iFreqVal[0]); // set the color of led
        }
        else if ( ((LED_COUNT / SEG) <= j) && (j < (LED_COUNT / SEG * 2)) )
        {
          set(j, iFreqVal[1]); //orginal code
        }
        else if ( ((LED_COUNT / SEG * 2) <= j) && (j < (LED_COUNT / SEG * 3)) )
        {
          set(j, iFreqVal[2]);
        }
        else if ( ((LED_COUNT / SEG * 3) <= j) && (j < (LED_COUNT / SEG * 4)) )
        {
          set(j, iFreqVal[3]);
        }
        else if ( ((LED_COUNT / SEG * 4) <= j) && (j < (LED_COUNT / SEG * 5)) )
        {
          set(j, iFreqVal[4]);
        }
        else
        {
          set(j, iFreqVal[5]);
        }
      }
      leds.show();
    }
    xEventGroupSetBits( eg, evtDo_AudioReadFreq );
  }
  vTaskDelete( NULL );
} // void fDo_ LEDs( void *pvParameters )
////
void fDo_AudioReadFreq( void *pvParameters )
{
  int64_t EndTime = esp_timer_get_time();
  int64_t StartTime = esp_timer_get_time(); //gets time in uSeconds like Arduino Micros
  for (;;)
  {
    xEventGroupWaitBits (eg, evtDo_AudioReadFreq, pdTRUE, pdTRUE, portMAX_DELAY);
    EndTime = esp_timer_get_time() - StartTime;
    // log_i( "TimeSpentOnTasks: %d", EndTime );
    Audio.ReadFreq(FreqVal);
    for (int i = 0; i < 7; i++)
    {
      FreqVal[i] = constrain( FreqVal[i], NOISE, A_D_ConversionBits );
      FreqVal[i] = map( FreqVal[i], NOISE, A_D_ConversionBits, 0, 255 );
      // log_i( "Freq %d Value: %d", i, FreqVal[i]);//used for debugging and Freq choosing
    }
    xQueueSend( xQ_LED_Info, ( void * ) &FreqVal, xTicksToWait0 );
    StartTime = esp_timer_get_time();
  }
  vTaskDelete( NULL );
} // fDo_ AudioReadFreq( void *pvParameters )
////
//the following function set the led color based on its position and freq value
//
void set(byte position, int value)
{
  // segment 0, red
  if ( (0 <= position) && (position < LED_COUNT / SEG) ) // segment 0 (bottom to top), red
  {
    if ( value == 0 )
    {
      leds.setPixelColor( position, 0, 0, 0 );
    } else {
      // increase light output of a low number
      // value += 10;
      // value = constrain( value, 0, 255 ); // keep raised value within limits
      if ( value <= 25 )
      {
        leds.setPixelColor( position, leds.Color( value , 0, 0) );
      } else {
        if ( (value * LED0_Multiplier) >= 255 )
        {
          leds.setPixelColor( position, leds.Color( 255 , 0, 0) );
        } else {
          leds.setPixelColor( position, leds.Color( (value * LED0_Multiplier) , 0, 0) );
        }
      }
    }
  }
  else if ( (LED_COUNT / SEG <= position) && (position < LED_COUNT / SEG * 2) ) // segment 1 yellow
  {
    if ( value == 0 )
    {
      leds.setPixelColor(position, leds.Color(0, 0, 0));
    }
    else
    {
      leds.setPixelColor(position, leds.Color( value, value, 0)); // works better to make yellow
    }
  }
  else if ( (LED_COUNT / SEG * 2 <= position) && (position < LED_COUNT / SEG * 3) ) // segment 2 pink
  {
    if ( value == 0 )
    {
      leds.setPixelColor(position, leds.Color(0, 0, 0));
    }

part 2 to follow.

}
  else if ( (LED_COUNT / SEG * 3 <= position) && (position < LED_COUNT / SEG * 4) ) // seg 3, green
  {
    if ( value == 0 )
    {
      leds.setPixelColor(position, leds.Color( 0, 0, 0));
    }
    else //
    {
      leds.setPixelColor( position, leds.Color( 0, value, 0) ); //
    }
  }
  else if ( (LED_COUNT / SEG * 4 <= position) && (position < LED_COUNT / SEG * 5) ) // segment 4, leds.color( R, G, B ), blue
  {
    if ( value == 0 )
    {
      leds.setPixelColor(position, leds.Color( 0, 0, 0));
    }
    else //
    {
      leds.setPixelColor(position, leds.Color( 0, 0, value) ); // blue
    }
  }
  else // segment 5
  {
    if ( value == 0 )
    {
      leds.setPixelColor(position, leds.Color( 0, 0, 0)); // only helps a little bit in turning the leds off
    }
    else
    {
      leds.setPixelColor( position, leds.Color( value, value * .3, 0) ); // orange
    }
  }
} // void set(byte position, int value)
////
void clearLEDs()
{
  for (int i = 0; i < LED_COUNT; i++)
  {
    leds.setPixelColor(i, 0);
  }
} // void clearLEDs()
//////////////////////////////////////////////
/*
  Each I_XXX preprocessor define translates into a single 32-bit instruction. So you can count instructions to learn which memory address are used and where the free mem space starts.

  To generate branch instructions, special M_ preprocessor defines are used. M_LABEL define can be used to define a branch target.
  Implementation note: these M_ preprocessor defines will be translated into two ulp_insn_t values: one is a token value which contains label number, and the other is the actual instruction.

*/
void ULP_BLINK_RUN(uint32_t us)
{
  size_t load_addr = 0;
  RTC_SLOW_MEM[12] = 0;
  ulp_set_wakeup_period(0, us);
  const ulp_insn_t  ulp_blink[] =
  {
    I_MOVI(R3, 12),                         // #12 -> R3
    I_LD(R0, R3, 0),                        // R0 = RTC_SLOW_MEM[R3(#12)]
    M_BL(1, 1),                             // GOTO M_LABEL(1) IF R0 < 1
    I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 1),  // RTC_GPIO2 = 1
    I_SUBI(R0, R0, 1),                      // R0 = R0 - 1, R0 = 1, R0 = 0
    I_ST(R0, R3, 0),                        // RTC_SLOW_MEM[R3(#12)] = R0
    M_BX(2),                                // GOTO M_LABEL(2)
    M_LABEL(1),                             // M_LABEL(1)
    I_WR_REG(RTC_GPIO_OUT_REG, 26, 27, 0),// RTC_GPIO2 = 0
    I_ADDI(R0, R0, 1),                    // R0 = R0 + 1, R0 = 0, R0 = 1
    I_ST(R0, R3, 0),                      // RTC_SLOW_MEM[R3(#12)] = R0
    M_LABEL(2),                             // M_LABEL(2)
    I_HALT()                                // HALT COPROCESSOR
  };
  const gpio_num_t led_gpios[] =
  {
    GPIO_NUM_2,
    // GPIO_NUM_0,
    // GPIO_NUM_4
  };
  for (size_t i = 0; i < sizeof(led_gpios) / sizeof(led_gpios[0]); ++i) {
    rtc_gpio_init(led_gpios[i]);
    rtc_gpio_set_direction(led_gpios[i], RTC_GPIO_MODE_OUTPUT_ONLY);
    rtc_gpio_set_level(led_gpios[i], 0);
  }
  size_t size = sizeof(ulp_blink) / sizeof(ulp_insn_t);
  ulp_process_macros_and_load( load_addr, ulp_blink, &size);
  ulp_run( load_addr );
} // void ULP_BLINK_RUN(uint32_t us)
//////////////////////////////////////////////

The audio analyzer is the DFRobot Audio Analyzer, that receives an input from a microphone module.

Hi shoebomber,

The Uno can power maybe 5~10 leds on a strip like this. A 60 strip could cause the Uno's regulator to go into thermal shutdown or be damaged. You need an external power supply, 5V, at least 3.5A. This should be connected directly to the strip. A second pair of wires from the psu can power the Uno via the 5V and ground pins. However, when connected to usb, you should disconnect the 5V pin from the psu (but keep ground connected).

Next, add a 470R resistor in the data line between the Uno and strip. If the wires from the psu are long, a 1000uF cap across the power wires at the start of the strip is a good idea.

Then you can test the strip using one of the example sketches that are installed with the neopixel library.

Also, please modify your original post and add in the code tags, as requested in the forum guide.