Starting in arduino for irrigation

Hello everyone.
I just discovered arduino.
At the base I am a computer scientist oprion programmers.
Indeed I want to realize a project of control of my irrigation system. For that I saw that arduino could help me to optimize the watering of my farm.
I wanted first to know a list of materials and components to buy to do some practical work to understand this world of electronics.
Can you tell me what I need to buy to do exercises and understand how the communities on arduino works?
Also I saw on amazon some kits for arduino but I am not sure if they are adequate for my situation of beginner.
Thank you for your collaboration.

I'd suggest finding a good houseplant watering project and emulating it to get your feet under you.
Kits are ok for general exploration, but you have a singular focus. For you buying individual parts is probably better.
After you get the waterer working you can start to play with options.
Scale up a bit at a time and eventually you will reach your goal and be comfortable doing so.

Thanks for your advice. It is indeed a good option.
At the risk of being wrong about the choice of components, could you list or give me the link of the components I can buy online?

You've caught me with my coffee. I'll see if I can find a good project for you.

1 Like

My water plant project using a ESP32.

#include <ESP32Time.h>
#include <WiFi.h>
#include <PubSubClient.h>
#include "certs.h" // include the connection info for WiFi and MQTT
#include "sdkconfig.h" // used for log printing
#include "esp_system.h"
#include "freertos/FreeRTOS.h" //freeRTOS items to be used
#include "freertos/task.h"
#include <driver/adc.h>
#include <SimpleKalmanFilter.h>
////
WiFiClient      wifiClient; // do the WiFi instantiation thing
PubSubClient    MQTTclient( mqtt_server, mqtt_port, wifiClient ); //do the MQTT instantiation thing
ESP32Time       rtc;
////
#define evtDoParticleRead  ( 1 << 0 ) // declare an event
#define evtADCreading      ( 1 << 3 )
EventGroupHandle_t eg; // variable for the event group handle
////
SemaphoreHandle_t sema_MQTT_KeepAlive;
SemaphoreHandle_t sema_mqttOK;
////
QueueHandle_t xQ_RemainingMoistureMQTT;
QueueHandle_t xQ_RM;
QueueHandle_t xQ_Message;
////
struct stu_message
{
  char payload [150] = {'\0'};
  String topic;
} x_message;
////
int    mqttOK = 0;
bool   TimeSet = false;
bool   manualPumpOn = false;
////
// interrupt service routine for WiFi events put into IRAM
void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
{
  switch (event) {
    case SYSTEM_EVENT_STA_CONNECTED:
      break;
    case SYSTEM_EVENT_STA_DISCONNECTED:
      log_i("Disconnected from WiFi access point");
      break;
    case SYSTEM_EVENT_AP_STADISCONNECTED:
      log_i("WiFi client disconnected");
      break;
    default: break;
  }
} // void IRAM_ATTR WiFiEvent(WiFiEvent_t event)
////
void IRAM_ATTR mqttCallback(char* topic, byte * payload, unsigned int length)
{
  // clear locations
  memset( x_message.payload, '\0', 150 );
  x_message.topic = ""; //clear string buffer
  x_message.topic = topic;
  int i = 0;
  for ( i; i < length; i++)
  {
    x_message.payload[i] = ((char)payload[i]);
  }
  x_message.payload[i] = '\0';
  xQueueOverwrite( xQ_Message, (void *) &x_message );// send data
} // void mqttCallback(char* topic, byte* payload, unsigned int length)
////
void setup()
{
  x_message.topic.reserve(150);
  //
  xQ_Message = xQueueCreate( 1, sizeof(stu_message) );
  xQ_RemainingMoistureMQTT = xQueueCreate( 1, sizeof(float) ); // sends a queue copy
  xQ_RM = xQueueCreate( 1, sizeof(float) );
  //
  eg = xEventGroupCreate(); // get an event group handle
  //
  sema_mqttOK =  xSemaphoreCreateBinary();
  xSemaphoreGive( sema_mqttOK );
  //
  gpio_config_t io_cfg = {}; // initialize the gpio configuration structure
  io_cfg.mode = GPIO_MODE_INPUT; // set gpio mode. GPIO_NUM_0 input from water level sensor
  io_cfg.pull_down_en = GPIO_PULLDOWN_ENABLE; // enable pull down
  io_cfg.pin_bit_mask = ( (1ULL << GPIO_NUM_0) ); //bit mask of the pins to set, assign gpio number to be configured
  gpio_config(&io_cfg); // configure the gpio based upon the parameters as set in the configuration structure
  //
  io_cfg = {}; //set configuration structure back to default values
  io_cfg.mode = GPIO_MODE_OUTPUT;
  io_cfg.pin_bit_mask = ( (1ULL << GPIO_NUM_4) | (1ULL << GPIO_NUM_5) ); //bit mask of the pins to set, assign gpio number to be configured
  gpio_config(&io_cfg);
  gpio_set_level( GPIO_NUM_4, LOW); // deenergize relay module
  gpio_set_level( GPIO_NUM_5, LOW); // deenergize valve
  // set up A:D channels  https://dl.espressif.com/doc/esp-idf/latest/api-reference/peripherals/adc.html
  adc1_config_width(ADC_WIDTH_12Bit);
  adc1_config_channel_atten(ADC1_CHANNEL_3, ADC_ATTEN_DB_11);// using GPIO 39
  //
  xTaskCreatePinnedToCore( MQTTkeepalive, "MQTTkeepalive", 10000, NULL, 6, NULL, 1 );
  xTaskCreatePinnedToCore( fparseMQTT, "fparseMQTT", 10000, NULL, 5, NULL, 1 ); // assign all to core 1, WiFi in use.
  xTaskCreatePinnedToCore( fPublish, "fPublish", 9000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fReadAD, "fReadAD", 9000, NULL, 3, NULL, 1 );
  xTaskCreatePinnedToCore( fDoMoistureDetector, "fDoMoistureDetector", 70000, NULL, 4, NULL, 1 );
  xTaskCreatePinnedToCore( fmqttWatchDog, "fmqttWatchDog", 3000, NULL, 2, NULL, 1 );
} //void setup()
////
void fReadAD( void * parameter )
{
  float    ADbits = 4096.0f;
  float    uPvolts = 3.3f;
  float    adcValue_b = 0.0f; //plant in yellow pot
  uint64_t TimePastKalman  = esp_timer_get_time(); // used by the Kalman filter UpdateProcessNoise, time since last kalman calculation
  float    WetValue = 1.07f; // value found by putting sensor in water
  float    DryValue = 2.732f; // value of probe when held in air
  float    Range = DryValue - WetValue;
  float    RemainingMoisture = 100.0f;
  SimpleKalmanFilter KF_ADC_b( 1.0f, 1.0f, .01f );
  for (;;)
  {
    xEventGroupWaitBits (eg, evtADCreading, pdTRUE, pdTRUE, portMAX_DELAY ); //
    adcValue_b = float( adc1_get_raw(ADC1_CHANNEL_3) ); //take a raw ADC reading
    adcValue_b = ( adcValue_b * uPvolts ) / ADbits; //calculate voltage
    KF_ADC_b.setProcessNoise( (esp_timer_get_time() - TimePastKalman) / 1000000.0f ); //get time, in microsecods, since last readings
    adcValue_b = KF_ADC_b.updateEstimate( adcValue_b ); // apply simple Kalman filter
    TimePastKalman = esp_timer_get_time(); // time of update complete
    RemainingMoisture = 100.0f * (1 - ((adcValue_b - WetValue) / (DryValue - WetValue))); //remaining moisture =  1-(xTarget - xMin) / (xMax - xMin) as a percentage of the sensor wet dry volatges
    xQueueOverwrite( xQ_RM, (void *) &RemainingMoisture );
    //log_i( "adcValue_b = %f remaining moisture %f%", adcValue_b, RemainingMoisture );
  }
  vTaskDelete( NULL );
}
////
void fPublish( void * parameter )
{
  float  RemainingMoisture = 100.0f;
  for (;;)
  {
    if ( xQueueReceive(xQ_RemainingMoistureMQTT, &RemainingMoisture, portMAX_DELAY) == pdTRUE )
    {
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY ); // whiles MQTTlient.loop() is running no other mqtt operations should be in process
      MQTTclient.publish( topicRemainingMoisture_0, String(RemainingMoisture).c_str() );
      xSemaphoreGive( sema_MQTT_KeepAlive );
    }
  } // for (;;)
  vTaskDelete( NULL );
} //void fPublish( void * parameter )
////
void WaterPump0_off()
{
  gpio_set_level( GPIO_NUM_4, LOW); //denergize relay module
  vTaskDelay( 1 );
  gpio_set_level( GPIO_NUM_5, LOW); //denergize/close valve
}
////
void WaterPump0_on()
{
  gpio_set_level( GPIO_NUM_5, HIGH); //energize/open valve
  vTaskDelay( 1 );
  gpio_set_level( GPIO_NUM_4, HIGH); //energize relay module
}
////
void fmqttWatchDog( void * paramater )
{
  int UpdateImeTrigger = 86400; //seconds in a day
  int UpdateTimeInterval = 85000; // get another reading when = UpdateTimeTrigger
  int maxNonMQTTresponse = 12;
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 5000; //delay for mS
  for (;;)
  {
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
    xSemaphoreTake( sema_mqttOK, portMAX_DELAY ); // update mqttOK
    mqttOK++;
    xSemaphoreGive( sema_mqttOK );
    if ( mqttOK >= maxNonMQTTresponse )
    {
      ESP.restart();
    }
    UpdateTimeInterval++; // trigger new time get
    if ( UpdateTimeInterval >= UpdateImeTrigger )
    {
      TimeSet = false; // sets doneTime to false to get an updated time after a days count of seconds
      UpdateTimeInterval = 0;
    }
  }
  vTaskDelete( NULL );
} //void fmqttWatchDog( void * paramater )
////
void fDoMoistureDetector( void * parameter )
{
  //wait for a mqtt connection
  while ( !MQTTclient.connected() )
  {
    vTaskDelay( 250 );
  }
  int      TimeToPublish = 5000000; //5000000uS
  int      TimeForADreading = 100 * 1000; // 100mS
  uint64_t TimePastPublish = esp_timer_get_time(); // used by publish
  uint64_t TimeADreading   = esp_timer_get_time();
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 10; //delay for 10mS
  float    RemainingMoisture = 100.0f; //prevents pump turn on during start up
  bool     pumpOn = false;
  uint64_t PumpOnTime = esp_timer_get_time();
  int      PumpRunTime = 11000000;
  uint64_t PumpOffWait = esp_timer_get_time();
  uint64_t PumpOffWaitFor = 60000000; //one minute
  float    lowMoisture = 23.0f;
  float    highMoisture = 40.0f;
  for (;;)
  {
    //read AD values every 100mS.
    if ( (esp_timer_get_time() - TimeADreading) >= TimeForADreading )
    {
      xEventGroupSetBits( eg, evtADCreading );
      TimeADreading = esp_timer_get_time();
    }
    xQueueReceive(xQ_RM, &RemainingMoisture, 0 ); //receive queue stuff no waiting
    //read gpio 0 is water level good. Yes: OK to run pump : no pump off.   remaining moisture good, denergize water pump otherwise energize water pump.
    if ( RemainingMoisture >= highMoisture )
    {
      WaterPump0_off();
    }
    if ( !pumpOn )
    {
      log_i( "not pump on ");
      if ( gpio_get_level( GPIO_NUM_0 ) )
      {
        if ( RemainingMoisture <= lowMoisture )
        {
          //has one minute passed since last pump energize, if so then allow motor to run
          if ( (esp_timer_get_time() - PumpOffWait) >= PumpOffWaitFor )
          {
            WaterPump0_on();
            log_i( "pump on " );
            pumpOn = !pumpOn;
            PumpOnTime = esp_timer_get_time();
          }
        }
        //xSemaphoreGive( sema_RemainingMoisture );
      } else {
        log_i( "water level bad " );
        WaterPump0_off();
        PumpOffWait = esp_timer_get_time();
      }
    } else {
      /*
         pump goes on runs for X seconds then turn off, then wait PumpOffWaitTime before being allowed to energize again
      */
      if ( (esp_timer_get_time() - PumpOnTime) >= PumpRunTime )
      {
        log_i( "pump off " );
        WaterPump0_off(); // after 5 seconds turn pump off
        pumpOn = !pumpOn;
        PumpOffWait = esp_timer_get_time();
      }
    }
    // publish to MQTT every 5000000uS
    if ( (esp_timer_get_time() - TimePastPublish) >= TimeToPublish )
    {
      xQueueOverwrite( xQ_RemainingMoistureMQTT, (void *) &RemainingMoisture );// data for mqtt publish
      TimePastPublish = esp_timer_get_time(); // get next publish time
    }
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete( NULL );
}// end fDoMoistureDetector()
////
void MQTTkeepalive( void *pvParameters )
{
  sema_MQTT_KeepAlive   = xSemaphoreCreateBinary();
  xSemaphoreGive( sema_MQTT_KeepAlive ); // found keep alive can mess with a publish, stop keep alive during publish
  MQTTclient.setKeepAlive( 90 ); // setting keep alive to 90 seconds makes for a very reliable connection, must be set before the 1st connection is made.
  TickType_t xLastWakeTime = xTaskGetTickCount();
  const TickType_t xFrequency = 250; // 250mS
  for (;;)
  {
    //check for a is-connected and if the WiFi 'thinks' its connected, found checking on both is more realible than just a single check
    if ( (wifiClient.connected()) && (WiFi.status() == WL_CONNECTED) )
    {
      xSemaphoreTake( sema_MQTT_KeepAlive, portMAX_DELAY ); // whiles MQTTlient.loop() is running no other mqtt operations should be in process
      MQTTclient.loop();
      xSemaphoreGive( sema_MQTT_KeepAlive );
    }
    else {
      log_i( "MQTT keep alive found MQTT status %s WiFi status %s", String(wifiClient.connected()), String(WiFi.status()) );
      if ( !(wifiClient.connected()) || !(WiFi.status() == WL_CONNECTED) )
      {
        connectToWiFi();
      }
      connectToMQTT();
    }
    xLastWakeTime = xTaskGetTickCount();
    vTaskDelayUntil( &xLastWakeTime, xFrequency );
  }
  vTaskDelete ( NULL );
}
////
void connectToMQTT()
{
  // create client ID from mac address
  byte mac[5];
  int count = 0;
  WiFi.macAddress(mac); // get mac address
  String clientID = String(mac[0]) + String(mac[4]);
  log_i( "connect to mqtt as client %s", clientID );
  while ( !MQTTclient.connected() )
  {
    MQTTclient.disconnect();
    MQTTclient.connect( clientID.c_str(), mqtt_username, mqtt_password );
    vTaskDelay( 250 );
    count++;
    if ( count == 5 )
    {
      ESP.restart();
    }
  }
  MQTTclient.setCallback( mqttCallback );
  MQTTclient.subscribe( topicOK );
}
////
void connectToWiFi()
{
  int TryCount = 0;
  while ( WiFi.status() != WL_CONNECTED )
  {
    TryCount++;
    WiFi.disconnect();
    WiFi.begin( SSID, PASSWORD );
    vTaskDelay( 4000 );
    if ( TryCount == 10 )
    {
      ESP.restart();
    }
  }
  WiFi.onEvent( WiFiEvent );
} // void connectToWiFi()
//////
void fparseMQTT( void *pvParameters )
{
  struct stu_message px_message;
  for (;;)
  {
    if ( xQueueReceive(xQ_Message, &px_message, portMAX_DELAY) == pdTRUE )
    {
      if ( px_message.topic == topicOK )
      {
        xSemaphoreTake( sema_mqttOK, portMAX_DELAY );
        mqttOK = 0; // clear mqtt ok count
        xSemaphoreGive( sema_mqttOK );
      }
      if ( !TimeSet )
      {
        String temp = "";
        temp = px_message.payload[0];
        temp += px_message.payload[1];
        temp += px_message.payload[2];
        temp += px_message.payload[3];
        int year =  temp.toInt();
        temp = "";
        temp = px_message.payload[5];
        temp += px_message.payload[6];
        int month =  temp.toInt();
        temp = "";
        temp = px_message.payload[8];
        temp += px_message.payload[9];
        int day =  temp.toInt();
        temp = "";
        temp = px_message.payload[11];
        temp += px_message.payload[12];
        int hour =  temp.toInt();
        temp = "";
        temp = px_message.payload[14];
        temp += px_message.payload[15];
        int min =  temp.toInt();
        rtc.setTime( 0, min, hour, day, month, year );
        log_i( "%s  ", rtc.getTime() );
        TimeSet = true;
      }
      // manual pump control
      if ( str_eTopic == topicPumpState )
      {
        if ( String(strPayload) == "off" )
        {
          WaterPump0_off();
          manualPumpOn = false;
        }
        if ( String(strPayload) == "on" )
        {
          WaterPump0_on();
          manualPumpOn = true;
        }
      }
    }
  } //for(;;)
  vTaskDelete ( NULL );
} // void fparseMQTT( void *pvParameters )
////
void loop() {}

I used
https://smile.amazon.com/gp/product/B07BZMPR4F/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1

https://smile.amazon.com/gp/product/B07XDS142G/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1

https://smile.amazon.com/gp/product/B079KCWPWQ/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1

https://smile.amazon.com/gp/product/B01MRVR9PS/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1

2 Likes

Sorry for that. Take your time.
I am ready to wait for you as long as possible. Ahahaha

https://smile.amazon.com/Capacitive-Moisture-Corrosion-Resistant-Detection/dp/B07SYBSHGX/ref=sr_1_1_sspa?crid=BE5IZGSJ19WU&keywords=capacitive+soil+moisture+sensor+v2.0&qid=1652870788&sprefix=capacitive+soi%2Caps%2C690&sr=8-1-spons&psc=1&spLa=ZW5jcnlwdGVkUXVhbGlmaWVyPUEzN0tVTTRFNkJXWVlMJmVuY3J5cHRlZElkPUEwMzA0NDIyMzFFOE1VRlNCRzhVSiZlbmNyeXB0ZWRBZElkPUEwNjczOTczMkdCUVRQTkk3SDJVOSZ3aWRnZXROYW1lPXNwX2F0ZiZhY3Rpb249Y2xpY2tSZWRpcmVjdCZkb05vdExvZ0NsaWNrPXRydWU=

https://smile.amazon.com/gp/product/B0151F3A9Q/ref=ppx_yo_dt_b_search_asin_title?ie=UTF8&psc=1

Many thanks.
I will process on that.

There you go, trusty @Idahowalker beat me to it.

2 Likes

Noooooo. Your help will welcome.
I am beginner

He's super experienced, and a great contributor.
I'd start with his.
Keep this thread going with your questions as they arise.

2 Likes

Wow. I have lucky so. Thanks for that precision.

I'll answer most any questions you may have about this project.

The code is written for an ESP32 ported over from Arduino code.

This'll make a good learning project. You may want to start thinking about the full irrigation project too, there are quite a few questions that'll need answering.

How much land do you need to irrigate? How will you know when to do so and for how long? Where does the water come from? Will you want to know that water is actually flowing? Where should alarms be visible?

Will irrigation decisions be based on current weather? Forecast weather? Soil sensors?

Do you have a vegetable garden or small plot to test with? Your pumps and electrics will need to survive outside in all weathers, so making sure they do will be key before you do a larger setup.

I have 5 hectares divided between fruit trees, melon cultivation and market gardening.
The climate is hot with 45 degrees from March to May. The area is located in Mali.
My source of water is a drilling which feeds a basin with solar panel.
As I mentioned, I am a beginner on arduino so I would like to familiarize myself with the use of the components in my small workshop.

That means you can only water your farm during the daytime? Best to water at night to limit evaporation and waste. What will you use to make water pressure for your irrigation system? Have you thought about having an Arduino watch the and control the level in the water holding basin?

I haven't started watering yet but it will be done in the times when the sun is not very hot, so ideally in the evening and morning.
For the pressure I want to depend on the gravitation. But if these are not giving much pressure I will have to look for a solar booster.
Concerning the control of the level of the pool I had not thought of controlling it by arduino. A humidifier sensor could solve this problem no?

You can use a waterproof echo sensor or a float switch, or two, to track water level

Ok this is noted.
For now, I will make a miniature prototype to experimentation

First consider the size of the tubing hole for the water to exit. The surface tension of water makes it NOT want to go through a small hole. Pressure forces it out. Experiment!

1 Like