understanding code faults for senser "SEN-10724"

hi there all you brilliant coders

I'm new to arduino and i as wondering if anyone could help me understand and possible fix up some code i found on line?
i should warn you that my coding is limited to a semester of python basics at my local university and a what I've been teaching myself about arduino over the last week...

so on to the code in qusetion which i found at

and goes like this

/***************************************************************************************************************
* Razor AHRS Firmware v1.4.2
* 9 Degree of Measurement Attitude and Heading Reference System
* for Sparkfun "9DOF Razor IMU" (SEN-10125 and SEN-10736)
* and "9DOF Sensor Stick" (SEN-10183, 10321 and SEN-10724)
*
* Released under GNU GPL (General Public License) v3.0
* Copyright (C) 2013 Peter Bartz [http://ptrbrtz.net]
* Copyright (C) 2011-2012 Quality & Usability Lab, Deutsche Telekom Laboratories, TU Berlin
*
* Infos, updates, bug reports, contributions and feedback:
*     https://github.com/ptrbrtz/razor-9dof-ahrs
*
*
* History:
*   * Original code (http://code.google.com/p/sf9domahrs/) by Doug Weibel and Jose Julio,
*     based on ArduIMU v1.5 by Jordi Munoz and William Premerlani, Jose Julio and Doug Weibel. Thank you!
*
*   * Updated code (http://groups.google.com/group/sf_9dof_ahrs_update) by David Malik (david.zsolt.malik@gmail.com)
*     for new Sparkfun 9DOF Razor hardware (SEN-10125).
*
*   * Updated and extended by Peter Bartz (peter-bartz@gmx.de):
*     * v1.3.0
*       * Cleaned up, streamlined and restructured most of the code to make it more comprehensible.
*       * Added sensor calibration (improves precision and responsiveness a lot!).
*       * Added binary yaw/pitch/roll output.
*       * Added basic serial command interface to set output modes/calibrate sensors/synch stream/etc.
*       * Added support to synch automatically when using Rovering Networks Bluetooth modules (and compatible).
*       * Wrote new easier to use test program (using Processing).
*       * Added support for new version of "9DOF Razor IMU": SEN-10736.
*       --> The output of this code is not compatible with the older versions!
*       --> A Processing sketch to test the tracker is available.
*     * v1.3.1
*       * Initializing rotation matrix based on start-up sensor readings -> orientation OK right away.
*       * Adjusted gyro low-pass filter and output rate settings.
*     * v1.3.2
*       * Adapted code to work with new Arduino 1.0 (and older versions still).
*     * v1.3.3
*       * Improved synching.
*     * v1.4.0
*       * Added support for SparkFun "9DOF Sensor Stick" (versions SEN-10183, SEN-10321 and SEN-10724).
*     * v1.4.1
*       * Added output modes to read raw and/or calibrated sensor data in text or binary format.
*       * Added static magnetometer soft iron distortion compensation
*     * v1.4.2
*       * (No core firmware changes)
*
* TODOs:
*   * Allow optional use of EEPROM for storing and reading calibration values.
*   * Use self-test and temperature-compensation features of the sensors.
***************************************************************************************************************/

/*
  "9DOF Razor IMU" hardware versions: SEN-10125 and SEN-10736

  ATMega328@3.3V, 8MHz

  ADXL345  : Accelerometer
  HMC5843  : Magnetometer on SEN-10125
  HMC5883L : Magnetometer on SEN-10736
  ITG-3200 : Gyro

  Arduino IDE : Select board "Arduino Pro or Pro Mini (3.3v, 8Mhz) w/ATmega328"
*/

/*
  "9DOF Sensor Stick" hardware versions: SEN-10183, SEN-10321 and SEN-10724

  ADXL345  : Accelerometer
  HMC5843  : Magnetometer on SEN-10183 and SEN-10321
  HMC5883L : Magnetometer on SEN-10724
  ITG-3200 : Gyro
*/

/*
  Axis definition (differs from definition printed on the board!):
    X axis pointing forward (towards the short edge with the connector holes)
    Y axis pointing to the right
    and Z axis pointing down.
    
  Positive yaw   : clockwise
  Positive roll  : right wing down
  Positive pitch : nose up
  
  Transformation order: first yaw then pitch then roll.
*/

/*
  Serial commands that the firmware understands:
  
  "#o<params>" - Set OUTPUT mode and parameters. The available options are:
  
      // Streaming output
      "#o0" - DISABLE continuous streaming output. Also see #f below.
      "#o1" - ENABLE continuous streaming output.
      
      // Angles output
      "#ob" - Output angles in BINARY format (yaw/pitch/roll as binary float, so one output frame
              is 3x4 = 12 bytes long).
      "#ot" - Output angles in TEXT format (Output frames have form like "#YPR=-142.28,-5.38,33.52",
              followed by carriage return and line feed [\r\n]).
      
      // Sensor calibration
      "#oc" - Go to CALIBRATION output mode.
      "#on" - When in calibration mode, go on to calibrate NEXT sensor.
      
      // Sensor data output
      "#osct" - Output CALIBRATED SENSOR data of all 9 axes in TEXT format.
                One frame consist of three lines - one for each sensor: acc, mag, gyr.
      "#osrt" - Output RAW SENSOR data of all 9 axes in TEXT format.
                One frame consist of three lines - one for each sensor: acc, mag, gyr.
      "#osbt" - Output BOTH raw and calibrated SENSOR data of all 9 axes in TEXT format.
                One frame consist of six lines - like #osrt and #osct combined (first RAW, then CALIBRATED).
                NOTE: This is a lot of number-to-text conversion work for the little 8MHz chip on the Razor boards.
                In fact it's too much and an output frame rate of 50Hz can not be maintained. #osbb.
      "#oscb" - Output CALIBRATED SENSOR data of all 9 axes in BINARY format.
                One frame consist of three 3x3 float values = 36 bytes. Order is: acc x/y/z, mag x/y/z, gyr x/y/z.
      "#osrb" - Output RAW SENSOR data of all 9 axes in BINARY format.
                One frame consist of three 3x3 float values = 36 bytes. Order is: acc x/y/z, mag x/y/z, gyr x/y/z.
      "#osbb" - Output BOTH raw and calibrated SENSOR data of all 9 axes in BINARY format.
                One frame consist of 2x36 = 72 bytes - like #osrb and #oscb combined (first RAW, then CALIBRATED).
      
      // Error message output        
      "#oe0" - Disable ERROR message output.
      "#oe1" - Enable ERROR message output.
    
    
  "#f" - Request one output frame - useful when continuous output is disabled and updates are
         required in larger intervals only. Though #f only requests one reply, replies are still
         bound to the internal 20ms (50Hz) time raster. So worst case delay that #f can add is 19.99ms.
         
         
  "#s<xy>" - Request synch token - useful to find out where the frame boundaries are in a continuous
         binary stream or to see if tracker is present and answering. The tracker will send
         "#SYNCH<xy>\r\n" in response (so it's possible to read using a readLine() function).
         x and y are two mandatory but arbitrary bytes that can be used to find out which request
         the answer belongs to.
          
          
  ("#C" and "#D" - Reserved for communication with optional Bluetooth module.)
  
  Newline characters are not required. So you could send "#ob#o1#s", which
  would set binary output mode, enable continuous streaming output and request
  a synch token all at once.
  
  The status LED will be on if streaming output is enabled and off otherwise.
  
  Byte order of binary output is little-endian: least significant byte comes first.
*/

carries on as

/*****************************************************************/
/*********** USER SETUP AREA! Set your options here! *************/
/*****************************************************************/

// HARDWARE OPTIONS
/*****************************************************************/
// Select your hardware here by uncommenting one line!
//#define HW__VERSION_CODE 10125 // SparkFun "9DOF Razor IMU" version "SEN-10125" (HMC5843 magnetometer)
//#define HW__VERSION_CODE 10736 // SparkFun "9DOF Razor IMU" version "SEN-10736" (HMC5883L magnetometer)
//#define HW__VERSION_CODE 10183 // SparkFun "9DOF Sensor Stick" version "SEN-10183" (HMC5843 magnetometer)
//#define HW__VERSION_CODE 10321 // SparkFun "9DOF Sensor Stick" version "SEN-10321" (HMC5843 magnetometer)
#define HW__VERSION_CODE 10724 // SparkFun "9DOF Sensor Stick" version "SEN-10724" (HMC5883L magnetometer)


// OUTPUT OPTIONS
/*****************************************************************/
// Set your serial port baud rate used to send out data here!
#define OUTPUT__BAUD_RATE 57600

// Sensor data output interval in milliseconds
// This may not work, if faster than 20ms (=50Hz)
// Code is tuned for 20ms, so better leave it like that
#define OUTPUT__DATA_INTERVAL 20  // in milliseconds

// Output mode definitions (do not change)
#define OUTPUT__MODE_CALIBRATE_SENSORS 0 // Outputs sensor min/max values as text for manual calibration
#define OUTPUT__MODE_ANGLES 1 // Outputs yaw/pitch/roll in degrees
#define OUTPUT__MODE_SENSORS_CALIB 2 // Outputs calibrated sensor values for all 9 axes
#define OUTPUT__MODE_SENSORS_RAW 3 // Outputs raw (uncalibrated) sensor values for all 9 axes
#define OUTPUT__MODE_SENSORS_BOTH 4 // Outputs calibrated AND raw sensor values for all 9 axes
// Output format definitions (do not change)
#define OUTPUT__FORMAT_TEXT 0 // Outputs data as text
#define OUTPUT__FORMAT_BINARY 1 // Outputs data as binary float

// Select your startup output mode and format here!
int output_mode = OUTPUT__MODE_ANGLES;
int output_format = OUTPUT__FORMAT_TEXT;

// Select if serial continuous streaming output is enabled per default on startup.
#define OUTPUT__STARTUP_STREAM_ON true  // true or false

// If set true, an error message will be output if we fail to read sensor data.
// Message format: "!ERR: reading <sensor>", followed by "\r\n".
boolean output_errors = false;  // true or false

// Bluetooth
// You can set this to true, if you have a Rovering Networks Bluetooth Module attached.
// The connect/disconnect message prefix of the module has to be set to "#".
// (Refer to manual, it can be set like this: SO,#)
// When using this, streaming output will only be enabled as long as we're connected. That way
// receiver and sender are synchronzed easily just by connecting/disconnecting.
// It is not necessary to set this! It just makes life easier when writing code for
// the receiving side. The Processing test sketch also works without setting this.
// NOTE: When using this, OUTPUT__STARTUP_STREAM_ON has no effect!
#define OUTPUT__HAS_RN_BLUETOOTH false  // true or false


// SENSOR CALIBRATION
/*****************************************************************/
// How to calibrate? Read the tutorial at http://dev.qu.tu-berlin.de/projects/sf-razor-9dof-ahrs
// Put MIN/MAX and OFFSET readings for your board here!
// Accelerometer
// "accel x,y,z (min/max) = X_MIN/X_MAX  Y_MIN/Y_MAX  Z_MIN/Z_MAX"
#define ACCEL_X_MIN ((float) -250)
#define ACCEL_X_MAX ((float) 250)
#define ACCEL_Y_MIN ((float) -250)
#define ACCEL_Y_MAX ((float) 250)
#define ACCEL_Z_MIN ((float) -250)
#define ACCEL_Z_MAX ((float) 250)

// Magnetometer (standard calibration mode)
// "magn x,y,z (min/max) = X_MIN/X_MAX  Y_MIN/Y_MAX  Z_MIN/Z_MAX"
#define MAGN_X_MIN ((float) -600)
#define MAGN_X_MAX ((float) 600)
#define MAGN_Y_MIN ((float) -600)
#define MAGN_Y_MAX ((float) 600)
#define MAGN_Z_MIN ((float) -600)
#define MAGN_Z_MAX ((float) 600)

// Magnetometer (extended calibration mode)
// Uncommend to use extended magnetometer calibration (compensates hard & soft iron errors)
//#define CALIBRATION__MAGN_USE_EXTENDED true
//const float magn_ellipsoid_center[3] = {0, 0, 0};
//const float magn_ellipsoid_transform[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};

// Gyroscope
// "gyro x,y,z (current/average) = .../OFFSET_X  .../OFFSET_Y  .../OFFSET_Z
#define GYRO_AVERAGE_OFFSET_X ((float) 0.0)
#define GYRO_AVERAGE_OFFSET_Y ((float) 0.0)
#define GYRO_AVERAGE_OFFSET_Z ((float) 0.0)

/*
// Calibration example:

// "accel x,y,z (min/max) = -277.00/264.00  -256.00/278.00  -299.00/235.00"
#define ACCEL_X_MIN ((float) -277)
#define ACCEL_X_MAX ((float) 264)
#define ACCEL_Y_MIN ((float) -256)
#define ACCEL_Y_MAX ((float) 278)
#define ACCEL_Z_MIN ((float) -299)
#define ACCEL_Z_MAX ((float) 235)

// "magn x,y,z (min/max) = -511.00/581.00  -516.00/568.00  -489.00/486.00"
//#define MAGN_X_MIN ((float) -511)
//#define MAGN_X_MAX ((float) 581)
//#define MAGN_Y_MIN ((float) -516)
//#define MAGN_Y_MAX ((float) 568)
//#define MAGN_Z_MIN ((float) -489)
//#define MAGN_Z_MAX ((float) 486)

// Extended magn
#define CALIBRATION__MAGN_USE_EXTENDED true
const float magn_ellipsoid_center[3] = {91.5, -13.5, -48.1};
const float magn_ellipsoid_transform[3][3] = {{0.902, -0.00354, 0.000636}, {-0.00354, 0.9, -0.00599}, {0.000636, -0.00599, 1}};

// Extended magn (with Sennheiser HD 485 headphones)
//#define CALIBRATION__MAGN_USE_EXTENDED true
//const float magn_ellipsoid_center[3] = {72.3360, 23.0954, 53.6261};
//const float magn_ellipsoid_transform[3][3] = {{0.879685, 0.000540833, -0.0106054}, {0.000540833, 0.891086, -0.0130338}, {-0.0106054, -0.0130338, 0.997494}};

//"gyro x,y,z (current/average) = -40.00/-42.05  98.00/96.20  -18.00/-18.36"
#define GYRO_AVERAGE_OFFSET_X ((float) -42.05)
#define GYRO_AVERAGE_OFFSET_Y ((float) 96.20)
#define GYRO_AVERAGE_OFFSET_Z ((float) -18.36)
*/


// DEBUG OPTIONS
/*****************************************************************/
// When set to true, gyro drift correction will not be applied
#define DEBUG__NO_DRIFT_CORRECTION false
// Print elapsed time after each I/O loop
#define DEBUG__PRINT_LOOP_TIME false


/*****************************************************************/
/****************** END OF USER SETUP AREA!  *********************/
// Check if hardware version code is defined
#ifndef HW__VERSION_CODE
  // Generate compile error
  #error YOU HAVE TO SELECT THE HARDWARE YOU ARE USING! See "HARDWARE OPTIONS" in "USER SETUP AREA" at top of Razor_AHRS.ino!
#endif

#include <Wire.h>

// Sensor calibration scale and offset values
#define ACCEL_X_OFFSET ((ACCEL_X_MIN + ACCEL_X_MAX) / 2.0f)
#define ACCEL_Y_OFFSET ((ACCEL_Y_MIN + ACCEL_Y_MAX) / 2.0f)
#define ACCEL_Z_OFFSET ((ACCEL_Z_MIN + ACCEL_Z_MAX) / 2.0f)
#define ACCEL_X_SCALE (GRAVITY / (ACCEL_X_MAX - ACCEL_X_OFFSET))
#define ACCEL_Y_SCALE (GRAVITY / (ACCEL_Y_MAX - ACCEL_Y_OFFSET))
#define ACCEL_Z_SCALE (GRAVITY / (ACCEL_Z_MAX - ACCEL_Z_OFFSET))

#define MAGN_X_OFFSET ((MAGN_X_MIN + MAGN_X_MAX) / 2.0f)
#define MAGN_Y_OFFSET ((MAGN_Y_MIN + MAGN_Y_MAX) / 2.0f)
#define MAGN_Z_OFFSET ((MAGN_Z_MIN + MAGN_Z_MAX) / 2.0f)
#define MAGN_X_SCALE (100.0f / (MAGN_X_MAX - MAGN_X_OFFSET))
#define MAGN_Y_SCALE (100.0f / (MAGN_Y_MAX - MAGN_Y_OFFSET))
#define MAGN_Z_SCALE (100.0f / (MAGN_Z_MAX - MAGN_Z_OFFSET))


// Gain for gyroscope (ITG-3200)
#define GYRO_GAIN 0.06957 // Same gain on all axes
#define GYRO_SCALED_RAD(x) (x * TO_RAD(GYRO_GAIN)) // Calculate the scaled gyro readings in radians per second

// DCM parameters
#define Kp_ROLLPITCH 0.02f
#define Ki_ROLLPITCH 0.00002f
#define Kp_YAW 1.2f
#define Ki_YAW 0.00002f

// Stuff
#define STATUS_LED_PIN 13  // Pin number of status LED
#define GRAVITY 256.0f // "1G reference" used for DCM filter and accelerometer calibration
#define TO_RAD(x) (x * 0.01745329252)  // *pi/180
#define TO_DEG(x) (x * 57.2957795131)  // *180/pi

// Sensor variables
float accel[3];  // Actually stores the NEGATED acceleration (equals gravity, if board not moving).
float accel_min[3];
float accel_max[3];

float magnetom[3];
float magnetom_min[3];
float magnetom_max[3];
float magnetom_tmp[3];

float gyro[3];
float gyro_average[3];
int gyro_num_samples = 0;

// DCM variables
float MAG_Heading;
float Accel_Vector[3]= {0, 0, 0}; // Store the acceleration in a vector
float Gyro_Vector[3]= {0, 0, 0}; // Store the gyros turn rate in a vector
float Omega_Vector[3]= {0, 0, 0}; // Corrected Gyro_Vector data
float Omega_P[3]= {0, 0, 0}; // Omega Proportional correction
float Omega_I[3]= {0, 0, 0}; // Omega Integrator
float Omega[3]= {0, 0, 0};
float errorRollPitch[3] = {0, 0, 0};
float errorYaw[3] = {0, 0, 0};
float DCM_Matrix[3][3] = {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}};
float Update_Matrix[3][3] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}};
float Temporary_Matrix[3][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}};

// Euler angles
float yaw;
float pitch;
float roll;

// DCM timing in the main loop
unsigned long timestamp;
unsigned long timestamp_old;
float G_Dt; // Integration time for DCM algorithm

// More output-state variables
boolean output_stream_on;
boolean output_single_on;
int curr_calibration_sensor = 0;
boolean reset_calibration_session_flag = true;
int num_accel_errors = 0;
int num_magn_errors = 0;
int num_gyro_errors = 0;

void read_sensors(){

  Read_Gyro(); // Read gyroscope
  Read_Accel(); // Read accelerometer
  Read_Magn(); // Read magnetometer
}

// Read every sensor and record a time stamp
// Init DCM with unfiltered orientation
// TODO re-init global vars?
void reset_sensor_fusion() {
  float temp1[3];
  float temp2[3];
  float xAxis[] = {1.0f, 0.0f, 0.0f};

  read_sensors();
  timestamp = millis();
  
  // GET PITCH
  // Using y-z-plane-component/x-component of gravity vector
  pitch = -atan2(accel[0], sqrt(accel[1] * accel[1] + accel[2] * accel[2]));
	
  // GET ROLL
  // Compensate pitch of gravity vector 
  Vector_Cross_Product(temp1, accel, xAxis);
  Vector_Cross_Product(temp2, xAxis, temp1);
  // Normally using x-z-plane-component/y-component of compensated gravity vector
  // roll = atan2(temp2[1], sqrt(temp2[0] * temp2[0] + temp2[2] * temp2[2]));
  // Since we compensated for pitch, x-z-plane-component equals z-component:
  roll = atan2(temp2[1], temp2[2]);
  
  // GET YAW
  Compass_Heading();
  yaw = MAG_Heading;
  
  // Init rotation matrix
  init_rotation_matrix(DCM_Matrix, yaw, pitch, roll);
}

// Apply calibration to raw sensor readings
void compensate_sensor_errors() {
    // Compensate accelerometer error
    accel[0] = (accel[0] - ACCEL_X_OFFSET) * ACCEL_X_SCALE;
    accel[1] = (accel[1] - ACCEL_Y_OFFSET) * ACCEL_Y_SCALE;
    accel[2] = (accel[2] - ACCEL_Z_OFFSET) * ACCEL_Z_SCALE;

    // Compensate magnetometer error
#if CALIBRATION__MAGN_USE_EXTENDED == true
    for (int i = 0; i < 3; i++)
      magnetom_tmp[i] = magnetom[i] - magn_ellipsoid_center[i];
    Matrix_Vector_Multiply(magn_ellipsoid_transform, magnetom_tmp, magnetom);
#else
    magnetom[0] = (magnetom[0] - MAGN_X_OFFSET) * MAGN_X_SCALE;
    magnetom[1] = (magnetom[1] - MAGN_Y_OFFSET) * MAGN_Y_SCALE;
    magnetom[2] = (magnetom[2] - MAGN_Z_OFFSET) * MAGN_Z_SCALE;
#endif

    // Compensate gyroscope error
    gyro[0] -= GYRO_AVERAGE_OFFSET_X;
    gyro[1] -= GYRO_AVERAGE_OFFSET_Y;
    gyro[2] -= GYRO_AVERAGE_OFFSET_Z;
}

// Reset calibration session if reset_calibration_session_flag is set
void check_reset_calibration_session()
{
  // Raw sensor values have to be read already, but no error compensation applied

  // Reset this calibration session?
  if (!reset_calibration_session_flag) return;
  
  // Reset acc and mag calibration variables
  for (int i = 0; i < 3; i++) {
    accel_min[i] = accel_max[i] = accel[i];
    magnetom_min[i] = magnetom_max[i] = magnetom[i];
  }

  // Reset gyro calibration variables
  gyro_num_samples = 0;  // Reset gyro calibration averaging
  gyro_average[0] = gyro_average[1] = gyro_average[2] = 0.0f;
  
  reset_calibration_session_flag = false;
}

void turn_output_stream_on()
{
  output_stream_on = true;
  digitalWrite(STATUS_LED_PIN, HIGH);
}

void turn_output_stream_off()
{
  output_stream_on = false;
  digitalWrite(STATUS_LED_PIN, LOW);
}

// Blocks until another byte is available on serial port
char readChar()
{
  while (Serial.available() < 1) { } // Block
  return Serial.read();
}

void setup()
{
  // Init serial output
  Serial.begin(OUTPUT__BAUD_RATE);
  
  // Init status LED
  pinMode (STATUS_LED_PIN, OUTPUT);
  digitalWrite(STATUS_LED_PIN, LOW);

  // Init sensors
  delay(50);  // Give sensors enough time to start
  I2C_Init();
  Accel_Init();
  Magn_Init();
  Gyro_Init();
  
  // Read sensors, init DCM algorithm
  delay(20);  // Give sensors enough time to collect data
  reset_sensor_fusion();

If it needs fixing it's presumably broken, but you forgot to say in what way.

[code]

  // Init output
#if (OUTPUT__HAS_RN_BLUETOOTH == true) || (OUTPUT__STARTUP_STREAM_ON == false)
  turn_output_stream_off();
#else
  turn_output_stream_on();
#endif
}

// Main loop
void loop()
{
  // Read incoming control messages
  if (Serial.available() >= 2)
  {
    if (Serial.read() == '#') // Start of new control message
    {
      int command = Serial.read(); // Commands
      if (command == 'f') // request one output _f_rame
        output_single_on = true;
      else if (command == 's') // _s_ynch request
      {
        // Read ID
        byte id[2];
        id[0] = readChar();
        id[1] = readChar();
        
        // Reply with synch message
        Serial.print("#SYNCH");
        Serial.write(id, 2);
        Serial.println();
      }
      else if (command == 'o') // Set _o_utput mode
      {
        char output_param = readChar();
        if (output_param == 'n')  // Calibrate _n_ext sensor
        {
          curr_calibration_sensor = (curr_calibration_sensor + 1) % 3;
          reset_calibration_session_flag = true;
        }
        else if (output_param == 't') // Output angles as _t_ext
        {
          output_mode = OUTPUT__MODE_ANGLES;
          output_format = OUTPUT__FORMAT_TEXT;
        }
        else if (output_param == 'b') // Output angles in _b_inary format
        {
          output_mode = OUTPUT__MODE_ANGLES;
          output_format = OUTPUT__FORMAT_BINARY;
        }
        else if (output_param == 'c') // Go to _c_alibration mode
        {
          output_mode = OUTPUT__MODE_CALIBRATE_SENSORS;
          reset_calibration_session_flag = true;
        }
        else if (output_param == 's') // Output _s_ensor values
        {
          char values_param = readChar();
          char format_param = readChar();
          if (values_param == 'r')  // Output _r_aw sensor values
            output_mode = OUTPUT__MODE_SENSORS_RAW;
          else if (values_param == 'c')  // Output _c_alibrated sensor values
            output_mode = OUTPUT__MODE_SENSORS_CALIB;
          else if (values_param == 'b')  // Output _b_oth sensor values (raw and calibrated)
            output_mode = OUTPUT__MODE_SENSORS_BOTH;

          if (format_param == 't') // Output values as _t_text
            output_format = OUTPUT__FORMAT_TEXT;
          else if (format_param == 'b') // Output values in _b_inary format
            output_format = OUTPUT__FORMAT_BINARY;
        }
        else if (output_param == '0') // Disable continuous streaming output
        {
          turn_output_stream_off();
          reset_calibration_session_flag = true;
        }
        else if (output_param == '1') // Enable continuous streaming output
        {
          reset_calibration_session_flag = true;
          turn_output_stream_on();
        }
        else if (output_param == 'e') // _e_rror output settings
        {
          char error_param = readChar();
          if (error_param == '0') output_errors = false;
          else if (error_param == '1') output_errors = true;
          else if (error_param == 'c') // get error count
          {
            Serial.print("#AMG-ERR:");
            Serial.print(num_accel_errors); Serial.print(",");
            Serial.print(num_magn_errors); Serial.print(",");
            Serial.println(num_gyro_errors);
          }
        }
      }
#if OUTPUT__HAS_RN_BLUETOOTH == true
      // Read messages from bluetooth module
      // For this to work, the connect/disconnect message prefix of the module has to be set to "#".
      else if (command == 'C') // Bluetooth "#CONNECT" message (does the same as "#o1")
        turn_output_stream_on();
      else if (command == 'D') // Bluetooth "#DISCONNECT" message (does the same as "#o0")
        turn_output_stream_off();
#endif // OUTPUT__HAS_RN_BLUETOOTH == true
    }
    else
    { } // Skip character
  }

  // Time to read the sensors again?
  if((millis() - timestamp) >= OUTPUT__DATA_INTERVAL)
  {
    timestamp_old = timestamp;
    timestamp = millis();
    if (timestamp > timestamp_old)
      G_Dt = (float) (timestamp - timestamp_old) / 1000.0f; // Real time of loop run. We use this on the DCM algorithm (gyro integration time)
    else G_Dt = 0;

    // Update sensor readings
    read_sensors();

    if (output_mode == OUTPUT__MODE_CALIBRATE_SENSORS)  // We're in calibration mode
    {
      check_reset_calibration_session();  // Check if this session needs a reset
      if (output_stream_on || output_single_on) output_calibration(curr_calibration_sensor);
    }
    else if (output_mode == OUTPUT__MODE_ANGLES)  // Output angles
    {
      // Apply sensor calibration
      compensate_sensor_errors();
    
      // Run DCM algorithm
      Compass_Heading(); // Calculate magnetic heading
      Matrix_update();
      Normalize();
      Drift_correction();
      Euler_angles();
      
      if (output_stream_on || output_single_on) output_angles();
    }
    else  // Output sensor values
    {      
      if (output_stream_on || output_single_on) output_sensors();
    }
    
    output_single_on = false;
    
#if DEBUG__PRINT_LOOP_TIME == true
    Serial.print("loop time (ms) = ");
    Serial.println(millis() - timestamp);
#endif
  }
#if DEBUG__PRINT_LOOP_TIME == true
  else
  {
    Serial.println("waiting...");
  }
#endif
}
}

which when i run this with the arduino compiler v1.0.5-r2 set to for an arduino nano w/ atmega328
i get errors

Razor_AHRS.ino: In function 'void read_sensors()':
Razor_AHRS:390: error: 'Read_Gyro' was not declared in this scope
Razor_AHRS:391: error: 'Read_Accel' was not declared in this scope
Razor_AHRS:392: error: 'Read_Magn' was not declared in this scope
Razor_AHRS.ino: In function 'void reset_sensor_fusion()':
Razor_AHRS:412: error: 'Vector_Cross_Product' was not declared in this scope
Razor_AHRS:420: error: 'Compass_Heading' was not declared in this scope
Razor_AHRS:424: error: 'init_rotation_matrix' was not declared in this scope
Razor_AHRS.ino: In function 'void setup()':
Razor_AHRS:502: error: 'I2C_Init' was not declared in this scope
Razor_AHRS:503: error: 'Accel_Init' was not declared in this scope
Razor_AHRS:504: error: 'Magn_Init' was not declared in this scope
Razor_AHRS:505: error: 'Gyro_Init' was not declared in this scope
Razor_AHRS.ino: In function 'void loop()':
Razor_AHRS:633: error: 'output_calibration' was not declared in this scope
Razor_AHRS:641: error: 'Compass_Heading' was not declared in this scope
Razor_AHRS:642: error: 'Matrix_update' was not declared in this scope
Razor_AHRS:643: error: 'Normalize' was not declared in this scope
Razor_AHRS:644: error: 'Drift_correction' was not declared in this scope
Razor_AHRS:645: error: 'Euler_angles' was not declared in this scope
Razor_AHRS:647: error: 'output_angles' was not declared in this scope
Razor_AHRS:651: error: 'output_sensors' was not declared in this scope
Razor_AHRS.ino: At global scope:
Razor_AHRS:668: error: expected declaration before '}' token

so thanks for the look in
and thanks in advance for any help you can give.

[/code]

sorry JimboZA i was still fighting with the forum word limit

ok so realized my first novice mistake i made, i didn't compile all the files provided into one...
so i no longer get error messages now that ive done so tho if any one wants to help me understand the what the different segments of code do it would be much appreciated