Hi everyone,
For a project in class, i need to use a MLX90614 infrared sensor with arduino without using the library that is associated, so i copied in my code the part of the two libraries (Adafruit_MLX90614.h and Adafruit_I2CDevice.h ) that are of interest and it returns that i2c_dev was not declared in this scope. So my question is : What is i2c_dev and how can i declare it ?
#ifndef Adafruit_I2CDevice_h
#define Adafruit_I2CDevice_h
#include <Arduino.h>
#include <Wire.h>
///< The class which defines how we will talk to this device over I2C
class Adafruit_I2CDevice {
public:
Adafruit_I2CDevice(uint8_t addr, TwoWire *theWire = &Wire);
uint8_t address(void);
bool begin(bool addr_detect = true);
void end(void);
bool detected(void);
bool read(uint8_t *buffer, size_t len, bool stop = true);
bool write(const uint8_t *buffer, size_t len, bool stop = true,
const uint8_t *prefix_buffer = NULL, size_t prefix_len = 0);
bool write_then_read(const uint8_t *write_buffer, size_t write_len,
uint8_t *read_buffer, size_t read_len,
bool stop = false);
bool setSpeed(uint32_t desiredclk);
/*! @brief How many bytes we can read in a transaction
* @return The size of the Wire receive/transmit buffer */
size_t maxBufferSize() { return _maxBufferSize; }
private:
uint8_t _addr;
TwoWire *_wire;
bool _begun;
size_t _maxBufferSize;
bool _read(uint8_t *buffer, size_t len, bool stop);
};
#endif // Adafruit_I2CDevice_h
////
uint8_t Adafruit_I2CDevice::address(void) { return _addr; }
////
Adafruit_I2CDevice::Adafruit_I2CDevice(uint8_t addr, TwoWire *theWire) {
_addr = addr;
_wire = theWire;
_begun = false;
#ifdef ARDUINO_ARCH_SAMD
_maxBufferSize = 250; // as defined in Wire.h's RingBuffer
#else
_maxBufferSize = 32;
#endif
}
/////
bool Adafruit_I2CDevice::write(const uint8_t *buffer, size_t len, bool stop,
const uint8_t *prefix_buffer,
size_t prefix_len) {
if ((len + prefix_len) > maxBufferSize()) {
// currently not guaranteed to work if more than 32 bytes!
// we will need to find out if some platforms have larger
// I2C buffer sizes :/
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println(F("\tI2CDevice could not write such a large buffer"));
#endif
return false;
}
_wire->beginTransmission(_addr);
// Write the prefix data (usually an address)
if ((prefix_len != 0) && (prefix_buffer != NULL)) {
if (_wire->write(prefix_buffer, prefix_len) != prefix_len) {
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println(F("\tI2CDevice failed to write"));
#endif
return false;
}
}
// Write the data itself
if (_wire->write(buffer, len) != len) {
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println(F("\tI2CDevice failed to write"));
#endif
return false;
}
#ifdef DEBUG_SERIAL
bool Adafruit_I2CDevice::read(uint8_t *buffer, size_t len, bool stop) {
size_t pos = 0;
while (pos < len) {
size_t read_len =
((len - pos) > maxBufferSize()) ? maxBufferSize() : (len - pos);
bool read_stop = (pos < (len - read_len)) ? false : stop;
if (!_read(buffer + pos, read_len, read_stop))
return false;
pos += read_len;
}
return true;
}
//////
bool Adafruit_I2CDevice::_read(uint8_t *buffer, size_t len, bool stop) {
#if defined(TinyWireM_h)
size_t recv = _wire->requestFrom((uint8_t)_addr, (uint8_t)len);
#else
size_t recv = _wire->requestFrom((uint8_t)_addr, (uint8_t)len, (uint8_t)stop);
#endif
if (recv != len) {
// Not enough data available to fulfill our obligation!
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.print(F("\tI2CDevice did not receive enough data: "));
DEBUG_SERIAL.println(recv);
#endif
return false;
}
for (uint16_t i = 0; i < len; i++) {
buffer[i] = _wire->read();
}
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.print(F("\tI2CREAD @ 0x"));
DEBUG_SERIAL.print(_addr, HEX);
DEBUG_SERIAL.print(F(" :: "));
for (uint16_t i = 0; i < len; i++) {
DEBUG_SERIAL.print(F("0x"));
DEBUG_SERIAL.print(buffer[i], HEX);
DEBUG_SERIAL.print(F(", "));
if (len % 32 == 31) {
DEBUG_SERIAL.println();
}
}
DEBUG_SERIAL.println();
#endif
return true;
}
DEBUG_SERIAL.print(F("\tI2CWRITE @ 0x"));
DEBUG_SERIAL.print(_addr, HEX);
DEBUG_SERIAL.print(F(" :: "));
if ((prefix_len != 0) && (prefix_buffer != NULL)) {
for (uint16_t i = 0; i < prefix_len; i++) {
DEBUG_SERIAL.print(F("0x"));
DEBUG_SERIAL.print(prefix_buffer[i], HEX);
DEBUG_SERIAL.print(F(", "));
}
}
for (uint16_t i = 0; i < len; i++) {
DEBUG_SERIAL.print(F("0x"));
DEBUG_SERIAL.print(buffer[i], HEX);
DEBUG_SERIAL.print(F(", "));
if (i % 32 == 31) {
DEBUG_SERIAL.println();
}
}
if (stop) {
DEBUG_SERIAL.print("\tSTOP");
}
#endif
if (_wire->endTransmission(stop) == 0) {
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println();
// DEBUG_SERIAL.println("Sent!");
#endif
return true;
} else {
#ifdef DEBUG_SERIAL
DEBUG_SERIAL.println("\tFailed to send!");
#endif
return false;
}
}
/////
bool begin(uint8_t addr, TwoWire *wire)
{
uint8_t _addr = addr; // needed for CRC
if (i2c_dev)
delete i2c_dev;
i2c_dev = new Adafruit_I2CDevice(addr, wire);
return i2c_dev->begin();
}
////
bool Adafruit_I2CDevice::write_then_read(const uint8_t *write_buffer,
size_t write_len, uint8_t *read_buffer,
size_t read_len, bool stop) {
if (!write(write_buffer, write_len, stop)) {
return false;
}
return read(read_buffer, read_len);
}
/////
uint16_t read16(uint8_t a) {
uint8_t buffer[3];
buffer[0] = a;
// read two bytes of data + pec
bool status =i2c_dev->write_then_read(buffer, 1, buffer, 3);
if (!status)
return 0;
// return data, ignore pec
return uint16_t(buffer[0]) | (uint16_t(buffer[1]) << 8);
}
///////
float readTemp(uint8_t reg) {
float temp;
temp = read16(reg);
if (temp == 0)
return NAN;
temp *= .02;
temp -= 273.15;
return temp;
}
///////
double readObjectTempC(void)
{
#define MLX90614_TOBJ1 0x07
return readTemp(MLX90614_TOBJ1);
}
///////
double readAmbientTempC(void) {
#define MLX90614_TA 0x06
return readTemp(MLX90614_TA);
}
///////
#define MLX90614_I2CADDR 0x5A
// RAM
#define MLX90614_RAWIR1 0x04
#define MLX90614_RAWIR2 0x05
#define MLX90614_TA 0x06
#define MLX90614_TOBJ1 0x07
#define MLX90614_TOBJ2 0x08
// EEPROM
#define MLX90614_TOMAX 0x20
#define MLX90614_TOMIN 0x21
#define MLX90614_PWMCTRL 0x22
#define MLX90614_TARANGE 0x23
#define MLX90614_EMISS 0x24
#define MLX90614_CONFIG 0x25
#define MLX90614_ADDR 0x2E
#define MLX90614_ID1 0x3C
#define MLX90614_ID2 0x3D
#define MLX90614_ID3 0x3E
#define MLX90614_ID4 0x3F
/**
* @brief Class to read from and control a MLX90614 Temp Sensor
*
*/
class Adafruit_MLX90614 {
public:
~Adafruit_MLX90614();
bool begin(uint8_t addr = MLX90614_I2CADDR, TwoWire *wire = &Wire);
double readObjectTempC(void);
double readAmbientTempC(void);
void writeEmissivityReg(uint16_t ereg);
double readEmissivity(void);
void writeEmissivity(double emissivity);
private:
Adafruit_I2CDevice *i2c_dev = NULL; ///< Pointer to I2C bus interface
float readTemp(uint8_t reg);
uint16_t read16(uint8_t addr);
void write16(uint8_t addr, uint16_t data);
byte crc8(byte *addr, byte len);
uint8_t _addr;
};
///////////notre code///////
float Text;
float Tpers;
float number = 2.0;
int loop_interval = 1000; //regarde la température toute les 1 secondes
Adafruit_MLX90614 mlx = Adafruit_MLX90614(); //definie le mlx comme un objet pour qu'il puisse tourner dans arduino
void setup() {
mlx.begin();
Serial.begin(115200);
delay(1000); // commence 1 seconde après
}
void loop() {
// lis la température ambiante/exterieure (Text) et la température de la personne (Tpers) en degrès Celcius
Tpers = number + mlx.readObjectTempC();
Text = mlx.readAmbientTempC();
Serial.println("Personne:" + String(Tpers) + " °C" + " exterieure:" + String(Text) + " °C") ; // écrit dans le log les valeurs de la temperature de l'exterieur et de la personne puis change de ligne
delay(loop_interval);
}