Hi,
I've combined code from two Arduino sketches. The sketch is built on the Fastled library and does not show errors when compiled, but in practice combines 2 different effects when displayed on my WS2812B LEDs. Case #2 seems to be mixed with case #3 and won't switch as separate effects. The sketch is a combination of Fastled/Palette Knife and Tweaking4all's several effects in one sketch (I used the code for the fire effect from that site).
This is my code:
/* This sketch is a compilation of the FastLED ColorPalette and a button press.
There are a bunch of mode options to choose from within the sketch.
Note: Codebender might not support some parts required by this sketch
as the version of FastLED may be out of date.
Copy to & upload via Java IDE if you run into this issue.
Have fun!
*/
#include <FastLED.h>
#include "colorutils.h"
#include "colorpalettes.h"
#if defined(FASTLED_VERSION) && (FASTLED_VERSION < 3001000)
#warning "Requires FastLED 3.1 or later; check github for latest code."
#endif
//This is where we adjust things to match our unique project:
#define NUM_LEDS 165
// adjust this to the number of LEDs you have: 16 or more
#define LED_TYPE WS2812B // adjust this to the type of LEDS. This is for Neopixels
#define DATA_PIN 4 // adjust this to the pin you've connected your LEDs to
#define BRIGHTNESS 255 // 255 is full brightness, 128 is half
#define SATURATION 255 // 0-255, 0 is pure white, 255 is fully saturated color
#define BUTTON_PIN 2 // Connect the button to GND and one of the pins.
#define UPDATES_PER_SECOND 50
#define MAX_POWER_MILLIAMPS 60000
#define FRAMES_PER_SECOND 60
#define COLOR_ORDER GRB
#define NUM_MODES 4 //Update this number to the highest number of "cases"
uint8_t gHue = 0; // rotating "base color" used by many of the patterns
uint16_t STEPS = 30;// STEPS set dynamically once we've started up
uint16_t SPEED = 30;// SPEED set dynamically once we've started up
CRGB leds[NUM_LEDS];
CRGBPalette16 currentPalette;
TBlendType currentBlending;
int ledMode = 0;
uint8_t colorLoop = 1;
CRGBPalette16 gPal;
// Gradient palette "Sunset_Real_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/nd/atmospheric/tn/Sunset_Real.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 28 bytes of program space.
DEFINE_GRADIENT_PALETTE( Sunset_Real_gp ) {
0,0, 0, 0,
1, 120, 0, 0,
22, 179, 22, 0,
51, 255,104, 0,
85, 167, 22, 18,
135, 100, 0,103,
198, 16, 0,130,
255, 0, 0,0};
// Gradient palette "bhw1_14_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/bhw/bhw1/tn/bhw1_14.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 36 bytes of program space.
DEFINE_GRADIENT_PALETTE( bhw1_14_gp ) {
0, 0, 0, 0,
12, 1, 1, 3,
53, 8, 1, 22,
80, 4, 6, 89,
119, 2, 25,216,
145, 7, 10, 99,
186, 15, 2, 31,
233, 2, 1, 5,
255, 0, 0, 0};
// Gradient palette "dkbluered_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/h5/tn/dkbluered.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 124 bytes of program space.
// Gradient palette "bhw2_21_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/bhw/bhw2/tn/bhw2_21.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 12 bytes of program space.
// Gradient palette "bhw2_21_gp", originally from
// http://soliton.vm.bytemark.co.uk/pub/cpt-city/bhw/bhw2/tn/bhw2_21.png.index.html
// converted for FastLED with gammas (2.6, 2.2, 2.5)
// Size: 12 bytes of program space.
DEFINE_GRADIENT_PALETTE( bhw2_21_gp ) {
0, 0, 0, 0,
22, 0, 0, 0,
51, 7,255, 8,
85, 0, 0, 0,
135, 0, 153, 76,
175, 0, 0, 0,
255, 153, 0, 153,
0, 0, 0, 0,};
DEFINE_GRADIENT_PALETTE( gold_black_gp ) {
0, 0, 0, 0,
50, 176, 143, 38,
119, 0, 0, 0,
255, 0, 0, 0};
const TProgmemPalette16 MyColors_p PROGMEM =
{
CRGB:: DarkBlue,
CRGB:: HotPink,
CRGB:: Teal,
CRGB:: BlueViolet,
CRGB:: DodgerBlue,
CRGB:: DeepPink,
CRGB:: Turquoise,
CRGB:: Indigo,
CRGB:: DarkBlue,
CRGB:: HotPink,
CRGB:: Teal,
CRGB:: BlueViolet,
CRGB:: DodgerBlue,
CRGB:: DeepPink,
CRGB:: Turquoise,
CRGB:: Indigo,
};
byte prevKeyState = HIGH; // button is active low
//------------------SETUP------------------
void setup() {
delay( 4000 ); // power-up safety delay
FastLED.addLeds<LED_TYPE,DATA_PIN,COLOR_ORDER>(leds, NUM_LEDS).setCorrection(TypicalLEDStrip);
FastLED.setBrightness( BRIGHTNESS );
currentBlending = LINEARBLEND; //all of these will be blended unless I tell them not to be
pinMode(BUTTON_PIN, INPUT_PULLUP);
digitalWrite(2, HIGH); // turn on pullup resistors
}
//------------------MAIN LOOP------------------
void loop() {
byte currKeyState = digitalRead(BUTTON_PIN);
if ((prevKeyState == LOW) && (currKeyState == HIGH)) {
shortKeyPress();
}
prevKeyState = currKeyState;
static uint8_t startIndex = 0;
startIndex = startIndex + 1; /* motion speed */
switch (ledMode)
{
//FastLED has a bunch of built-in "palettes" to choose from:
//RainbowColors_p is all the colors of the rainbow
//PartyColors_p is all the colors of the rainbow minus greens
//RainbowStripeColors_p is all the colors of the rainbow divided into stripes
//HeatColors_p is reds and yellows, white, and black
//LavaColors_p is more reds and orangey colors
//ForestColors_p is greens and yellows
//OceanColors_p is lots of blues and aqua colors
//CloudColors_p is blues and white
//MyColors_p is whatever you define above
//The group of colors in a palette are sent through a strip of LEDS in speed and step increments youve chosen
//You can change the SPEED and STEPS to make things look exactly how you want
//SPEED refers to how fast the colors move. Higher numbers = faster motion
//STEPS refers to how wide the bands of color are. Based on the palette & number of LEDs, some look better at different steps
case 0:
{currentPalette = bhw1_14_gp; SPEED = 75; STEPS = 1;}
break;
case 1: {currentPalette = Sunset_Real_gp; SPEED = 35; STEPS = 1;}
break;
case 2: {currentPalette = bhw2_21_gp; SPEED = 25; STEPS = 1;}
break;
// Fire - Cooling rate, Sparking rate, speed delay
case 3 : {Fire(55,120,15);
break;
}
}
FillLEDsFromPaletteColors( startIndex);
FastLED.show();
FastLED.delay(1000 / SPEED);
}
void shortKeyPress() {
ledMode++;
if (ledMode > NUM_MODES) {
ledMode=0;
}
}
void FillLEDsFromPaletteColors( uint8_t colorIndex) {
for( int i = 0; i < NUM_LEDS; i++) {
leds[i] = ColorFromPalette( currentPalette, colorIndex, BRIGHTNESS, currentBlending);
colorIndex += STEPS;
}
}
void SetupNewPalette()
{
fill_solid( currentPalette, 16, CRGB::Black);
// set half of the LEDs to the color selected here
// Play with the color, steps, and speed to get different results.
currentPalette[0] = CRGB::DodgerBlue;
currentPalette[1] = CRGB::DodgerBlue;
currentPalette[2] = CRGB::DodgerBlue;
currentPalette[3] = CRGB::DodgerBlue;
currentPalette[8] = CRGB::DodgerBlue;
currentPalette[9] = CRGB::DodgerBlue;
currentPalette[10] = CRGB::DodgerBlue;
currentPalette[11] = CRGB::DodgerBlue;
}
void Fire(int Cooling, int Sparking, int SpeedDelay) {
static byte heat[NUM_LEDS];
int cooldown;
// Step 1. Cool down every cell a little
for( int i = 0; i < NUM_LEDS; i++) {
cooldown = random(0, ((Cooling * 10) / NUM_LEDS) + 2);
if(cooldown>heat[i]) {
heat[i]=0;
} else {
heat[i]=heat[i]-cooldown;
}
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for( int k= NUM_LEDS - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;
}
// Step 3. Randomly ignite new 'sparks' near the bottom
if( random(255) < Sparking ) {
int y = random(7);
heat[y] = heat[y] + random(160,255);
//heat[y] = random(160,255);
}
// Step 4. Convert heat to LED colors
for( int j = 0; j < NUM_LEDS; j++) {
setPixelHeatColor(j, heat[j] );
}
showStrip();
delay(SpeedDelay);
}
void setPixelHeatColor (int Pixel, byte temperature) {
// Scale 'heat' down from 0-255 to 0-191
byte t192 = round((temperature/255.0)*191);
// calculate ramp up from
byte heatramp = t192 & 0x3F; // 0..63
heatramp <<= 2; // scale up to 0..252
// figure out which third of the spectrum we're in:
if( t192 > 0x80) { // hottest
setPixel(Pixel, 255, 255, heatramp);
} else if( t192 > 0x40 ) { // middle
setPixel(Pixel, 255, heatramp, 0);
} else { // coolest
setPixel(Pixel, heatramp, 0, 0);
}
}
// ***************************************
// ** FastLed/NeoPixel Common Functions **
// ***************************************
// Apply LED color changes
void showStrip() {
#ifdef ADAFRUIT_NEOPIXEL_H
// NeoPixel
strip.show();
#endif
#ifndef ADAFRUIT_NEOPIXEL_H
// FastLED
FastLED.show();
#endif
}
// Set a LED color (not yet visible)
void setPixel(int Pixel, byte red, byte green, byte blue) {
#ifdef ADAFRUIT_NEOPIXEL_H
// NeoPixel
strip.setPixelColor(Pixel, strip.Color(red, green, blue));
#endif
#ifndef ADAFRUIT_NEOPIXEL_H
// FastLED
leds[Pixel].r = red;
leds[Pixel].g = green;
leds[Pixel].b = blue;
#endif
}
// Set all LEDs to a given color and apply it (visible)
void setAll(byte red, byte green, byte blue) {
for(int i = 0; i < NUM_LEDS; i++ ) {
setPixel(i, red, green, blue);
}
showStrip();
}
And for reference, this is the code I got the fire effect from (it is specifically case 15 in the sketch):
#include "FastLED.h"
#include <EEPROM.h>
#define NUM_LEDS 60
CRGB leds[NUM_LEDS];
#define PIN 5
#define BUTTON 2
byte selectedEffect=0;
void setup()
{
FastLED.addLeds<WS2811, PIN, GRB>(leds, NUM_LEDS).setCorrection( TypicalLEDStrip );
pinMode(2,INPUT_PULLUP); // internal pull-up resistor
attachInterrupt (digitalPinToInterrupt (BUTTON), changeEffect, CHANGE); // pressed
}
// *** REPLACE FROM HERE ***
void loop() {
EEPROM.get(0,selectedEffect);
if(selectedEffect>18) {
selectedEffect=0;
EEPROM.put(0,0);
}
switch(selectedEffect) {
case 0 : {
// RGBLoop - no parameters
RGBLoop();
break;
}
case 1 : {
// FadeInOut - Color (red, green. blue)
FadeInOut(0xff, 0x00, 0x00); // red
FadeInOut(0xff, 0xff, 0xff); // white
FadeInOut(0x00, 0x00, 0xff); // blue
break;
}
case 2 : {
// Strobe - Color (red, green, blue), number of flashes, flash speed, end pause
Strobe(0xff, 0xff, 0xff, 10, 50, 1000);
break;
}
case 3 : {
// HalloweenEyes - Color (red, green, blue), Size of eye, space between eyes, fade (true/false), steps, fade delay, end pause
HalloweenEyes(0xff, 0x00, 0x00,
1, 4,
true, random(5,50), random(50,150),
random(1000, 10000));
HalloweenEyes(0xff, 0x00, 0x00,
1, 4,
true, random(5,50), random(50,150),
random(1000, 10000));
break;
}
case 4 : {
// CylonBounce - Color (red, green, blue), eye size, speed delay, end pause
CylonBounce(0xff, 0x00, 0x00, 4, 10, 50);
break;
}
case 5 : {
// NewKITT - Color (red, green, blue), eye size, speed delay, end pause
NewKITT(0xff, 0x00, 0x00, 8, 10, 50);
break;
}
case 6 : {
// Twinkle - Color (red, green, blue), count, speed delay, only one twinkle (true/false)
Twinkle(0xff, 0x00, 0x00, 10, 100, false);
break;
}
case 7 : {
// TwinkleRandom - twinkle count, speed delay, only one (true/false)
TwinkleRandom(20, 100, false);
break;
}
case 8 : {
// Sparkle - Color (red, green, blue), speed delay
Sparkle(0xff, 0xff, 0xff, 0);
break;
}
case 9 : {
// SnowSparkle - Color (red, green, blue), sparkle delay, speed delay
SnowSparkle(0x10, 0x10, 0x10, 20, random(100,1000));
break;
}
case 10 : {
// Running Lights - Color (red, green, blue), wave dealy
RunningLights(0xff,0x00,0x00, 50); // red
RunningLights(0xff,0xff,0xff, 50); // white
RunningLights(0x00,0x00,0xff, 50); // blue
break;
}
case 11 : {
// colorWipe - Color (red, green, blue), speed delay
colorWipe(0x00,0xff,0x00, 50);
colorWipe(0x00,0x00,0x00, 50);
break;
}
case 12 : {
// rainbowCycle - speed delay
rainbowCycle(20);
break;
}
case 13 : {
// theatherChase - Color (red, green, blue), speed delay
theaterChase(0xff,0,0,50);
break;
}
case 14 : {
// theaterChaseRainbow - Speed delay
theaterChaseRainbow(50);
break;
}
case 15 : {
// Fire - Cooling rate, Sparking rate, speed delay
Fire(55,120,15);
break;
}
// simple bouncingBalls not included, since BouncingColoredBalls can perform this as well as shown below
// BouncingColoredBalls - Number of balls, color (red, green, blue) array, continuous
// CAUTION: If set to continuous then this effect will never stop!!!
case 16 : {
// mimic BouncingBalls
byte onecolor[1][3] = { {0xff, 0x00, 0x00} };
BouncingColoredBalls(1, onecolor, false);
break;
}
case 17 : {
// multiple colored balls
byte colors[3][3] = { {0xff, 0x00, 0x00},
{0xff, 0xff, 0xff},
{0x00, 0x00, 0xff} };
BouncingColoredBalls(3, colors, false);
break;
}
case 18 : {
// meteorRain - Color (red, green, blue), meteor size, trail decay, random trail decay (true/false), speed delay
meteorRain(0xff,0xff,0xff,10, 64, true, 30);
break;
}
}
}
void changeEffect() {
if (digitalRead (BUTTON) == HIGH) {
selectedEffect++;
EEPROM.put(0, selectedEffect);
asm volatile (" jmp 0");
}
}
// *************************
// ** LEDEffect Functions **
// *************************
void RGBLoop(){
for(int j = 0; j < 3; j++ ) {
// Fade IN
for(int k = 0; k < 256; k++) {
switch(j) {
case 0: setAll(k,0,0); break;
case 1: setAll(0,k,0); break;
case 2: setAll(0,0,k); break;
}
showStrip();
delay(3);
}
// Fade OUT
for(int k = 255; k >= 0; k--) {
switch(j) {
case 0: setAll(k,0,0); break;
case 1: setAll(0,k,0); break;
case 2: setAll(0,0,k); break;
}
showStrip();
delay(3);
}
}
}
void FadeInOut(byte red, byte green, byte blue){
float r, g, b;
for(int k = 0; k < 256; k=k+1) {
r = (k/256.0)*red;
g = (k/256.0)*green;
b = (k/256.0)*blue;
setAll(r,g,b);
showStrip();
}
for(int k = 255; k >= 0; k=k-2) {
r = (k/256.0)*red;
g = (k/256.0)*green;
b = (k/256.0)*blue;
setAll(r,g,b);
showStrip();
}
}
void Strobe(byte red, byte green, byte blue, int StrobeCount, int FlashDelay, int EndPause){
for(int j = 0; j < StrobeCount; j++) {
setAll(red,green,blue);
showStrip();
delay(FlashDelay);
setAll(0,0,0);
showStrip();
delay(FlashDelay);
}
delay(EndPause);
}
void HalloweenEyes(byte red, byte green, byte blue,
int EyeWidth, int EyeSpace,
boolean Fade, int Steps, int FadeDelay,
int EndPause){
randomSeed(analogRead(0));
int i;
int StartPoint = random( 0, NUM_LEDS - (2*EyeWidth) - EyeSpace );
int Start2ndEye = StartPoint + EyeWidth + EyeSpace;
for(i = 0; i < EyeWidth; i++) {
setPixel(StartPoint + i, red, green, blue);
setPixel(Start2ndEye + i, red, green, blue);
}
showStrip();
if(Fade==true) {
float r, g, b;
for(int j = Steps; j >= 0; j--) {
r = j*(red/Steps);
g = j*(green/Steps);
b = j*(blue/Steps);
for(i = 0; i < EyeWidth; i++) {
setPixel(StartPoint + i, r, g, b);
setPixel(Start2ndEye + i, r, g, b);
}
showStrip();
delay(FadeDelay);
}
}
setAll(0,0,0); // Set all black
delay(EndPause);
}
void CylonBounce(byte red, byte green, byte blue, int EyeSize, int SpeedDelay, int ReturnDelay){
for(int i = 0; i < NUM_LEDS-EyeSize-2; i++) {
setAll(0,0,0);
setPixel(i, red/10, green/10, blue/10);
for(int j = 1; j <= EyeSize; j++) {
setPixel(i+j, red, green, blue);
}
setPixel(i+EyeSize+1, red/10, green/10, blue/10);
showStrip();
delay(SpeedDelay);
}
delay(ReturnDelay);
for(int i = NUM_LEDS-EyeSize-2; i > 0; i--) {
setAll(0,0,0);
setPixel(i, red/10, green/10, blue/10);
for(int j = 1; j <= EyeSize; j++) {
setPixel(i+j, red, green, blue);
}
setPixel(i+EyeSize+1, red/10, green/10, blue/10);
showStrip();
delay(SpeedDelay);
}
delay(ReturnDelay);
}
void NewKITT(byte red, byte green, byte blue, int EyeSize, int SpeedDelay, int ReturnDelay){
RightToLeft(red, green, blue, EyeSize, SpeedDelay, ReturnDelay);
LeftToRight(red, green, blue, EyeSize, SpeedDelay, ReturnDelay);
OutsideToCenter(red, green, blue, EyeSize, SpeedDelay, ReturnDelay);
CenterToOutside(red, green, blue, EyeSize, SpeedDelay, ReturnDelay);
LeftToRight(red, green, blue, EyeSize, SpeedDelay, ReturnDelay);
RightToLeft(red, green, blue, EyeSize, SpeedDelay, ReturnDelay);
OutsideToCenter(red, green, blue, EyeSize, SpeedDelay, ReturnDelay);
CenterToOutside(red, green, blue, EyeSize, SpeedDelay, ReturnDelay);
}
// used by NewKITT
void CenterToOutside(byte red, byte green, byte blue, int EyeSize, int SpeedDelay, int ReturnDelay) {
for(int i =((NUM_LEDS-EyeSize)/2); i>=0; i--) {
setAll(0,0,0);
setPixel(i, red/10, green/10, blue/10);
for(int j = 1; j <= EyeSize; j++) {
setPixel(i+j, red, green, blue);
}
setPixel(i+EyeSize+1, red/10, green/10, blue/10);
setPixel(NUM_LEDS-i, red/10, green/10, blue/10);
for(int j = 1; j <= EyeSize; j++) {
setPixel(NUM_LEDS-i-j, red, green, blue);
}
setPixel(NUM_LEDS-i-EyeSize-1, red/10, green/10, blue/10);
showStrip();
delay(SpeedDelay);
}
delay(ReturnDelay);
}
// used by NewKITT
void OutsideToCenter(byte red, byte green, byte blue, int EyeSize, int SpeedDelay, int ReturnDelay) {
for(int i = 0; i<=((NUM_LEDS-EyeSize)/2); i++) {
setAll(0,0,0);
setPixel(i, red/10, green/10, blue/10);
for(int j = 1; j <= EyeSize; j++) {
setPixel(i+j, red, green, blue);
}
setPixel(i+EyeSize+1, red/10, green/10, blue/10);
setPixel(NUM_LEDS-i, red/10, green/10, blue/10);
for(int j = 1; j <= EyeSize; j++) {
setPixel(NUM_LEDS-i-j, red, green, blue);
}
setPixel(NUM_LEDS-i-EyeSize-1, red/10, green/10, blue/10);
showStrip();
delay(SpeedDelay);
}
delay(ReturnDelay);
}
// used by NewKITT
void LeftToRight(byte red, byte green, byte blue, int EyeSize, int SpeedDelay, int ReturnDelay) {
for(int i = 0; i < NUM_LEDS-EyeSize-2; i++) {
setAll(0,0,0);
setPixel(i, red/10, green/10, blue/10);
for(int j = 1; j <= EyeSize; j++) {
setPixel(i+j, red, green, blue);
}
setPixel(i+EyeSize+1, red/10, green/10, blue/10);
showStrip();
delay(SpeedDelay);
}
delay(ReturnDelay);
}
// used by NewKITT
void RightToLeft(byte red, byte green, byte blue, int EyeSize, int SpeedDelay, int ReturnDelay) {
for(int i = NUM_LEDS-EyeSize-2; i > 0; i--) {
setAll(0,0,0);
setPixel(i, red/10, green/10, blue/10);
for(int j = 1; j <= EyeSize; j++) {
setPixel(i+j, red, green, blue);
}
setPixel(i+EyeSize+1, red/10, green/10, blue/10);
showStrip();
delay(SpeedDelay);
}
delay(ReturnDelay);
}
void Twinkle(byte red, byte green, byte blue, int Count, int SpeedDelay, boolean OnlyOne) {
setAll(0,0,0);
for (int i=0; i<Count; i++) {
setPixel(random(NUM_LEDS),red,green,blue);
showStrip();
delay(SpeedDelay);
if(OnlyOne) {
setAll(0,0,0);
}
}
delay(SpeedDelay);
}
void TwinkleRandom(int Count, int SpeedDelay, boolean OnlyOne) {
setAll(0,0,0);
for (int i=0; i<Count; i++) {
setPixel(random(NUM_LEDS),random(0,255),random(0,255),random(0,255));
showStrip();
delay(SpeedDelay);
if(OnlyOne) {
setAll(0,0,0);
}
}
delay(SpeedDelay);
}
void Sparkle(byte red, byte green, byte blue, int SpeedDelay) {
int Pixel = random(NUM_LEDS);
setPixel(Pixel,red,green,blue);
showStrip();
delay(SpeedDelay);
setPixel(Pixel,0,0,0);
}
void SnowSparkle(byte red, byte green, byte blue, int SparkleDelay, int SpeedDelay) {
setAll(red,green,blue);
int Pixel = random(NUM_LEDS);
setPixel(Pixel,0xff,0xff,0xff);
showStrip();
delay(SparkleDelay);
setPixel(Pixel,red,green,blue);
showStrip();
delay(SpeedDelay);
}
void RunningLights(byte red, byte green, byte blue, int WaveDelay) {
int Position=0;
for(int i=0; i<NUM_LEDS*2; i++)
{
Position++; // = 0; //Position + Rate;
for(int i=0; i<NUM_LEDS; i++) {
// sine wave, 3 offset waves make a rainbow!
//float level = sin(i+Position) * 127 + 128;
//setPixel(i,level,0,0);
//float level = sin(i+Position) * 127 + 128;
setPixel(i,((sin(i+Position) * 127 + 128)/255)*red,
((sin(i+Position) * 127 + 128)/255)*green,
((sin(i+Position) * 127 + 128)/255)*blue);
}
showStrip();
delay(WaveDelay);
}
}
void colorWipe(byte red, byte green, byte blue, int SpeedDelay) {
for(uint16_t i=0; i<NUM_LEDS; i++) {
setPixel(i, red, green, blue);
showStrip();
delay(SpeedDelay);
}
}
void rainbowCycle(int SpeedDelay) {
byte *c;
uint16_t i, j;
for(j=0; j<256*5; j++) { // 5 cycles of all colors on wheel
for(i=0; i< NUM_LEDS; i++) {
c=Wheel(((i * 256 / NUM_LEDS) + j) & 255);
setPixel(i, *c, *(c+1), *(c+2));
}
showStrip();
delay(SpeedDelay);
}
}
// used by rainbowCycle and theaterChaseRainbow
byte * Wheel(byte WheelPos) {
static byte c[3];
if(WheelPos < 85) {
c[0]=WheelPos * 3;
c[1]=255 - WheelPos * 3;
c[2]=0;
} else if(WheelPos < 170) {
WheelPos -= 85;
c[0]=255 - WheelPos * 3;
c[1]=0;
c[2]=WheelPos * 3;
} else {
WheelPos -= 170;
c[0]=0;
c[1]=WheelPos * 3;
c[2]=255 - WheelPos * 3;
}
return c;
}
void theaterChase(byte red, byte green, byte blue, int SpeedDelay) {
for (int j=0; j<10; j++) { //do 10 cycles of chasing
for (int q=0; q < 3; q++) {
for (int i=0; i < NUM_LEDS; i=i+3) {
setPixel(i+q, red, green, blue); //turn every third pixel on
}
showStrip();
delay(SpeedDelay);
for (int i=0; i < NUM_LEDS; i=i+3) {
setPixel(i+q, 0,0,0); //turn every third pixel off
}
}
}
}
void theaterChaseRainbow(int SpeedDelay) {
byte *c;
for (int j=0; j < 256; j++) { // cycle all 256 colors in the wheel
for (int q=0; q < 3; q++) {
for (int i=0; i < NUM_LEDS; i=i+3) {
c = Wheel( (i+j) % 255);
setPixel(i+q, *c, *(c+1), *(c+2)); //turn every third pixel on
}
showStrip();
delay(SpeedDelay);
for (int i=0; i < NUM_LEDS; i=i+3) {
setPixel(i+q, 0,0,0); //turn every third pixel off
}
}
}
}
void Fire(int Cooling, int Sparking, int SpeedDelay) {
static byte heat[NUM_LEDS];
int cooldown;
// Step 1. Cool down every cell a little
for( int i = 0; i < NUM_LEDS; i++) {
cooldown = random(0, ((Cooling * 10) / NUM_LEDS) + 2);
if(cooldown>heat[i]) {
heat[i]=0;
} else {
heat[i]=heat[i]-cooldown;
}
}
// Step 2. Heat from each cell drifts 'up' and diffuses a little
for( int k= NUM_LEDS - 1; k >= 2; k--) {
heat[k] = (heat[k - 1] + heat[k - 2] + heat[k - 2]) / 3;
}
// Step 3. Randomly ignite new 'sparks' near the bottom
if( random(255) < Sparking ) {
int y = random(7);
heat[y] = heat[y] + random(160,255);
//heat[y] = random(160,255);
}
// Step 4. Convert heat to LED colors
for( int j = 0; j < NUM_LEDS; j++) {
setPixelHeatColor(j, heat[j] );
}
showStrip();
delay(SpeedDelay);
}
void setPixelHeatColor (int Pixel, byte temperature) {
// Scale 'heat' down from 0-255 to 0-191
byte t192 = round((temperature/255.0)*191);
// calculate ramp up from
byte heatramp = t192 & 0x3F; // 0..63
heatramp <<= 2; // scale up to 0..252
// figure out which third of the spectrum we're in:
if( t192 > 0x80) { // hottest
setPixel(Pixel, 255, 255, heatramp);
} else if( t192 > 0x40 ) { // middle
setPixel(Pixel, 255, heatramp, 0);
} else { // coolest
setPixel(Pixel, heatramp, 0, 0);
}
}
void BouncingColoredBalls(int BallCount, byte colors[][3], boolean continuous) {
float Gravity = -9.81;
int StartHeight = 1;
float Height[BallCount];
float ImpactVelocityStart = sqrt( -2 * Gravity * StartHeight );
float ImpactVelocity[BallCount];
float TimeSinceLastBounce[BallCount];
int Position[BallCount];
long ClockTimeSinceLastBounce[BallCount];
float Dampening[BallCount];
boolean ballBouncing[BallCount];
boolean ballsStillBouncing = true;
for (int i = 0 ; i < BallCount ; i++) {
ClockTimeSinceLastBounce[i] = millis();
Height[i] = StartHeight;
Position[i] = 0;
ImpactVelocity[i] = ImpactVelocityStart;
TimeSinceLastBounce[i] = 0;
Dampening[i] = 0.90 - float(i)/pow(BallCount,2);
ballBouncing[i]=true;
}
while (ballsStillBouncing) {
for (int i = 0 ; i < BallCount ; i++) {
TimeSinceLastBounce[i] = millis() - ClockTimeSinceLastBounce[i];
Height[i] = 0.5 * Gravity * pow( TimeSinceLastBounce[i]/1000 , 2.0 ) + ImpactVelocity[i] * TimeSinceLastBounce[i]/1000;
if ( Height[i] < 0 ) {
Height[i] = 0;
ImpactVelocity[i] = Dampening[i] * ImpactVelocity[i];
ClockTimeSinceLastBounce[i] = millis();
if ( ImpactVelocity[i] < 0.01 ) {
if (continuous) {
ImpactVelocity[i] = ImpactVelocityStart;
} else {
ballBouncing[i]=false;
}
}
}
Position[i] = round( Height[i] * (NUM_LEDS - 1) / StartHeight);
}
ballsStillBouncing = false; // assume no balls bouncing
for (int i = 0 ; i < BallCount ; i++) {
setPixel(Position[i],colors[i][0],colors[i][1],colors[i][2]);
if ( ballBouncing[i] ) {
ballsStillBouncing = true;
}
}
showStrip();
setAll(0,0,0);
}
}
void meteorRain(byte red, byte green, byte blue, byte meteorSize, byte meteorTrailDecay, boolean meteorRandomDecay, int SpeedDelay) {
setAll(0,0,0);
for(int i = 0; i < NUM_LEDS+NUM_LEDS; i++) {
// fade brightness all LEDs one step
for(int j=0; j<NUM_LEDS; j++) {
if( (!meteorRandomDecay) || (random(10)>5) ) {
fadeToBlack(j, meteorTrailDecay );
}
}
// draw meteor
for(int j = 0; j < meteorSize; j++) {
if( ( i-j <NUM_LEDS) && (i-j>=0) ) {
setPixel(i-j, red, green, blue);
}
}
showStrip();
delay(SpeedDelay);
}
}
// used by meteorrain
void fadeToBlack(int ledNo, byte fadeValue) {
#ifdef ADAFRUIT_NEOPIXEL_H
// NeoPixel
uint32_t oldColor;
uint8_t r, g, b;
int value;
oldColor = strip.getPixelColor(ledNo);
r = (oldColor & 0x00ff0000UL) >> 16;
g = (oldColor & 0x0000ff00UL) >> 8;
b = (oldColor & 0x000000ffUL);
r=(r<=10)? 0 : (int) r-(r*fadeValue/256);
g=(g<=10)? 0 : (int) g-(g*fadeValue/256);
b=(b<=10)? 0 : (int) b-(b*fadeValue/256);
strip.setPixelColor(ledNo, r,g,b);
#endif
#ifndef ADAFRUIT_NEOPIXEL_H
// FastLED
leds[ledNo].fadeToBlackBy( fadeValue );
#endif
}
// *** REPLACE TO HERE ***
// ***************************************
// ** FastLed/NeoPixel Common Functions **
// ***************************************
// Apply LED color changes
void showStrip() {
#ifdef ADAFRUIT_NEOPIXEL_H
// NeoPixel
strip.show();
#endif
#ifndef ADAFRUIT_NEOPIXEL_H
// FastLED
FastLED.show();
#endif
}
// Set a LED color (not yet visible)
void setPixel(int Pixel, byte red, byte green, byte blue) {
#ifdef ADAFRUIT_NEOPIXEL_H
// NeoPixel
strip.setPixelColor(Pixel, strip.Color(red, green, blue));
#endif
#ifndef ADAFRUIT_NEOPIXEL_H
// FastLED
leds[Pixel].r = red;
leds[Pixel].g = green;
leds[Pixel].b = blue;
#endif
}
// Set all LEDs to a given color and apply it (visible)
void setAll(byte red, byte green, byte blue) {
for(int i = 0; i < NUM_LEDS; i++ ) {
setPixel(i, red, green, blue);
}
showStrip();
}
Why won't case 2 and 3 in my sketch remain separate?
Thanks