Led blinken lassen

Moin

Ich verzweifel grad an meinen ersten sketch.ich habe hier die Ledstripe WS2812B

Und würde es gerne wie im folgenden video programmieren( ab 4.18min) nur in der Farbe rot

Ich bekomme zwar einzelnen leds zum dauerleuchten aber das wars auch schon.

Gibt es vielleicht ein fertiges sketch für sowas Wo man nut etwas edieren muss?

Gruß und dank

Hast Du schon mal in den Bibliotheksbeispielen geschaut, da solltest Du fündig werden.

Können Sie genau die Animation beschreiben, die Sie sehen möchten?

Die fastled Bibliothek hat viele Beispiele:

Also mal für alle die, die nicht klicken sondern die URL rauskopieren: Let's build a Motherboard Wall - YouTube

So und nu. Das Ding ist so schlecht - aber gut. Mach die Picxel rot an, bis Du 10 Pixel am laufen hast. Dann mach den letzten aus und den nächsten an.

Du brauchst Merker:
Anzahl der Pixel, die Du an hast.
Den ersten Pixel, den Du angemacht hast. (wird dann der letzte)
Den letzten Pixel, den Du angemacht hast. (der nächste wird der erste)
Das ganze mit einer millis()-lastmillis>=intervall Bedingung und Du kannst mit dem intervall die Geschwindigkeit deiner Snake bestimmen.

moin habe es jetzt soweit hinbekommen

nur gehen die Leds langsam und gedimmt aus ich würde es gerne so haben das sie nur an und aus gehen. was müsste ich dort ändern?

hier der code

CRGBArray<NUM_LEDS> leds;

// Overall twinkle speed.
// 0 (VERY slow) to 8 (VERY fast).  
// 4, 5, and 6 are recommended, default is 4.
#define TWINKLE_SPEED 4

// Overall twinkle density.
// 0 (NONE lit) to 8 (ALL lit at once).  
// Default is 1.
#define TWINKLE_DENSITY 1

// How often to change color palettes.
#define SECONDS_PER_PALETTE  300
// Also: toward the bottom of the file is an array 
// called "ActivePaletteList" which controls which color
// palettes are used; you can add or remove color palettes
// from there freely.

// Background color for 'unlit' pixels
// Can be set to CRGB::Black if desired.
CRGB gBackgroundColor = CRGB::Black; 
// Example of dim incandescent fairy light background color
// CRGB gBackgroundColor = CRGB(CRGB::FairyLight).nscale8_video(16);

// If AUTO_SELECT_BACKGROUND_COLOR is set to 1,
// then for any palette where the first two entries 
// are the same, a dimmed version of that color will
// automatically be used as the background color.
#define AUTO_SELECT_BACKGROUND_COLOR 0

// If COOL_LIKE_INCANDESCENT is set to 1, colors will 
// fade out slighted 'reddened', similar to how
// incandescent bulbs change color as they get dim down.
#define COOL_LIKE_INCANDESCENT 0


CRGBPalette16 gCurrentPalette;
CRGBPalette16 gTargetPalette;

void setup() {
  delay( 300 ); //safety startup delay
  FastLED.setMaxPowerInVoltsAndMilliamps( VOLTS, MAX_MA);
  FastLED.addLeds<LED_TYPE,DATA_PIN,COLOR_ORDER>(leds, NUM_LEDS)
    .setCorrection(TypicalLEDStrip);

  chooseNextColorPalette(gTargetPalette);
}


void loop()
{
  EVERY_N_SECONDS( SECONDS_PER_PALETTE ) { 
    chooseNextColorPalette( gTargetPalette ); 
  }
  
  EVERY_N_MILLISECONDS( 12 ) {
    nblendPaletteTowardPalette( gCurrentPalette, gTargetPalette, 12);
  }

  drawTwinkles( leds);
  
  FastLED.show();
}


//  This function loops over each pixel, calculates the 
//  adjusted 'clock' that this pixel should use, and calls 
//  "CalculateOneTwinkle" on each pixel.  It then displays
//  either the twinkle color of the background color, 
//  whichever is brighter.
void drawTwinkles( CRGBSet& L)
{
  // "PRNG16" is the pseudorandom number generator
  // It MUST be reset to the same starting value each time
  // this function is called, so that the sequence of 'random'
  // numbers that it generates is (paradoxically) stable.
  uint16_t PRNG16 = 11337;
  
  uint32_t clock32 = millis();

  // Set up the background color, "bg".
  // if AUTO_SELECT_BACKGROUND_COLOR == 1, and the first two colors of
  // the current palette are identical, then a deeply faded version of
  // that color is used for the background color
  CRGB bg;
  if( (AUTO_SELECT_BACKGROUND_COLOR == 100) &&
      (gCurrentPalette[0] == gCurrentPalette[1] )) {
    bg = gCurrentPalette[0];
    uint8_t bglight = bg.getAverageLight();
    if( bglight > 64) {
      bg.nscale8_video( 16); // very bright, so scale to 1/16th
    } else if( bglight > 16) {
      bg.nscale8_video( 64); // not that bright, so scale to 1/4th
    } else {
      bg.nscale8_video( 86); // dim, scale to 1/3rd.
    }
  } else {
    bg = gBackgroundColor; // just use the explicitly defined background color
  }

  uint8_t backgroundBrightness = bg.getAverageLight();
  
  for( CRGB& pixel: L) {
    PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
    uint16_t myclockoffset16= PRNG16; // use that number as clock offset
    PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
    // use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
    uint8_t myspeedmultiplierQ5_3 =  ((((PRNG16 & 0xFF)>>4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
    uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
    uint8_t  myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel

    // We now have the adjusted 'clock' for this pixel, now we call
    // the function that computes what color the pixel should be based
    // on the "brightness = f( time )" idea.
    CRGB c = computeOneTwinkle( myclock30, myunique8);

    uint8_t cbright = c.getAverageLight();
    int16_t deltabright = cbright - backgroundBrightness;
    if( deltabright >= 32 || (!bg)) {
      // If the new pixel is significantly brighter than the background color, 
      // use the new color.
      pixel = c;
    } else if( deltabright > 0 ) {
      // If the new pixel is just slightly brighter than the background color,
      // mix a blend of the new color and the background color
      pixel = blend( bg, c, deltabright * 8);
    } else { 
      // if the new pixel is not at all brighter than the background color,
      // just use the background color.
      pixel = bg;
    }
  }
}


//  This function takes a time in pseudo-milliseconds,
//  figures out brightness = f( time ), and also hue = f( time )
//  The 'low digits' of the millisecond time are used as 
//  input to the brightness wave function.  
//  The 'high digits' are used to select a color, so that the color
//  does not change over the course of the fade-in, fade-out
//  of one cycle of the brightness wave function.
//  The 'high digits' are also used to determine whether this pixel
//  should light at all during this cycle, based on the TWINKLE_DENSITY.
CRGB computeOneTwinkle( uint32_t ms, uint8_t salt)
{
  uint16_t ticks = ms >> (8-TWINKLE_SPEED);
  uint8_t fastcycle8 = ticks;
  uint16_t slowcycle16 = (ticks >> 8) + salt;
  slowcycle16 += sin8( slowcycle16);
  slowcycle16 =  (slowcycle16 * 2053) + 1384;
  uint8_t slowcycle8 = (slowcycle16 & 0xFF) + (slowcycle16 >> 8);
  
  uint8_t bright = 0;
  if( ((slowcycle8 & 0x0E)/2) < TWINKLE_DENSITY) {
    bright = attackDecayWave8( fastcycle8);
  }

  uint8_t hue = slowcycle8 - salt;
  CRGB c;
  if( bright > 0) {
    c = ColorFromPalette( gCurrentPalette, hue, bright, NOBLEND);
    if( COOL_LIKE_INCANDESCENT == 1 ) {
      coolLikeIncandescent( c, fastcycle8);
    }
  } else {
    c = CRGB::Black;
  }
  return c;
}


// This function is like 'triwave8', which produces a 
// symmetrical up-and-down triangle sawtooth waveform, except that this
// function produces a triangle wave with a faster attack and a slower decay:
//
//     / \ 
//    /     \ 
//   /         \ 
//  /             \ 
//

uint8_t attackDecayWave8( uint8_t i)
{
  if( i < 86) {
    return i * 3;
  } else {
    i -= 86;
    return 255 - (i + (i/2));
  }
}

// This function takes a pixel, and if its in the 'fading down'
// part of the cycle, it adjusts the color a little bit like the 
// way that incandescent bulbs fade toward 'red' as they dim.
void coolLikeIncandescent( CRGB& c, uint8_t phase)
{
  if( phase < 128) return;

  uint8_t cooling = (phase - 128) >> 4;
  c.g = qsub8( c.g, cooling);
  c.b = qsub8( c.b, cooling * 2);
}

// A mostly red palette with green accents and white trim.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedGreenWhite_p FL_PROGMEM =
{  CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red };



// A red and white striped palette
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedWhite_p FL_PROGMEM =
{  CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red };

// A mostly blue palette with white accents.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 BlueWhite_p FL_PROGMEM =
{  CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red };


// A palette of soft snowflakes with the occasional bright one
const TProgmemRGBPalette16 Snow_p FL_PROGMEM =
{  0x304048, 0x304048, 0x304048, 0x304048,
   0x304048, 0x304048, 0x304048, 0x304048,
   0x304048, 0x304048, 0x304048, 0x304048,
   0x304048, 0x304048, 0x304048, 0xE0F0FF };

// A palette reminiscent of large 'old-school' C9-size tree lights
// in the five classic colors: red, orange, green, blue, and white.
#define C9_Red    0xB80400

const TProgmemRGBPalette16 RetroC9_p FL_PROGMEM =
{  C9_Red,    C9_Red, C9_Red,    C9_Red,
   C9_Red,    C9_Red,    C9_Red,    C9_Red,
   C9_Red,    C9_Red,    C9_Red,    C9_Red,
   C9_Red,   C9_Red,   C9_Red,
   C9_Red
};

// Add or remove palette names from this list to control which color
// palettes are used, and in what order.
const TProgmemRGBPalette16* ActivePaletteList[] = {
  &RetroC9_p,
};


// Advance to the next color palette in the list (above).
void chooseNextColorPalette( CRGBPalette16& pal)
{
  const uint8_t numberOfPalettes = sizeof(ActivePaletteList) / sizeof(ActivePaletteList[0]);
  static uint8_t whichPalette = -1; 
  whichPalette = addmod8( whichPalette, 1, numberOfPalettes);

  pal = *(ActivePaletteList[whichPalette]);

der code ist im FastLED und das script heißt TwinkleFox

CRGBArray<NUM_LEDS> leds;

// Overall twinkle speed.
// 0 (VERY slow) to 8 (VERY fast).  
// 4, 5, and 6 are recommended, default is 4.
#define TWINKLE_SPEED 4

// Overall twinkle density.
// 0 (NONE lit) to 8 (ALL lit at once).  
// Default is 1.
#define TWINKLE_DENSITY 1

// How often to change color palettes.
#define SECONDS_PER_PALETTE  300
// Also: toward the bottom of the file is an array 
// called "ActivePaletteList" which controls which color
// palettes are used; you can add or remove color palettes
// from there freely.

// Background color for 'unlit' pixels
// Can be set to CRGB::Black if desired.
CRGB gBackgroundColor = CRGB::Black; 
// Example of dim incandescent fairy light background color
// CRGB gBackgroundColor = CRGB(CRGB::FairyLight).nscale8_video(16);

// If AUTO_SELECT_BACKGROUND_COLOR is set to 1,
// then for any palette where the first two entries 
// are the same, a dimmed version of that color will
// automatically be used as the background color.
#define AUTO_SELECT_BACKGROUND_COLOR 0

// If COOL_LIKE_INCANDESCENT is set to 1, colors will 
// fade out slighted 'reddened', similar to how
// incandescent bulbs change color as they get dim down.
#define COOL_LIKE_INCANDESCENT 0


CRGBPalette16 gCurrentPalette;
CRGBPalette16 gTargetPalette;

void setup() {
  delay( 300 ); //safety startup delay
  FastLED.setMaxPowerInVoltsAndMilliamps( VOLTS, MAX_MA);
  FastLED.addLeds<LED_TYPE,DATA_PIN,COLOR_ORDER>(leds, NUM_LEDS)
    .setCorrection(TypicalLEDStrip);

  chooseNextColorPalette(gTargetPalette);
}


void loop()
{
  EVERY_N_SECONDS( SECONDS_PER_PALETTE ) { 
    chooseNextColorPalette( gTargetPalette ); 
  }
  
  EVERY_N_MILLISECONDS( 12 ) {
    nblendPaletteTowardPalette( gCurrentPalette, gTargetPalette, 12);
  }

  drawTwinkles( leds);
  
  FastLED.show();
}


//  This function loops over each pixel, calculates the 
//  adjusted 'clock' that this pixel should use, and calls 
//  "CalculateOneTwinkle" on each pixel.  It then displays
//  either the twinkle color of the background color, 
//  whichever is brighter.
void drawTwinkles( CRGBSet& L)
{
  // "PRNG16" is the pseudorandom number generator
  // It MUST be reset to the same starting value each time
  // this function is called, so that the sequence of 'random'
  // numbers that it generates is (paradoxically) stable.
  uint16_t PRNG16 = 11337;
  
  uint32_t clock32 = millis();

  // Set up the background color, "bg".
  // if AUTO_SELECT_BACKGROUND_COLOR == 1, and the first two colors of
  // the current palette are identical, then a deeply faded version of
  // that color is used for the background color
  CRGB bg;
  if( (AUTO_SELECT_BACKGROUND_COLOR == 100) &&
      (gCurrentPalette[0] == gCurrentPalette[1] )) {
    bg = gCurrentPalette[0];
    uint8_t bglight = bg.getAverageLight();
    if( bglight > 64) {
      bg.nscale8_video( 16); // very bright, so scale to 1/16th
    } else if( bglight > 16) {
      bg.nscale8_video( 64); // not that bright, so scale to 1/4th
    } else {
      bg.nscale8_video( 86); // dim, scale to 1/3rd.
    }
  } else {
    bg = gBackgroundColor; // just use the explicitly defined background color
  }

  uint8_t backgroundBrightness = bg.getAverageLight();
  
  for( CRGB& pixel: L) {
    PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
    uint16_t myclockoffset16= PRNG16; // use that number as clock offset
    PRNG16 = (uint16_t)(PRNG16 * 2053) + 1384; // next 'random' number
    // use that number as clock speed adjustment factor (in 8ths, from 8/8ths to 23/8ths)
    uint8_t myspeedmultiplierQ5_3 =  ((((PRNG16 & 0xFF)>>4) + (PRNG16 & 0x0F)) & 0x0F) + 0x08;
    uint32_t myclock30 = (uint32_t)((clock32 * myspeedmultiplierQ5_3) >> 3) + myclockoffset16;
    uint8_t  myunique8 = PRNG16 >> 8; // get 'salt' value for this pixel

    // We now have the adjusted 'clock' for this pixel, now we call
    // the function that computes what color the pixel should be based
    // on the "brightness = f( time )" idea.
    CRGB c = computeOneTwinkle( myclock30, myunique8);

    uint8_t cbright = c.getAverageLight();
    int16_t deltabright = cbright - backgroundBrightness;
    if( deltabright >= 32 || (!bg)) {
      // If the new pixel is significantly brighter than the background color, 
      // use the new color.
      pixel = c;
    } else if( deltabright > 0 ) {
      // If the new pixel is just slightly brighter than the background color,
      // mix a blend of the new color and the background color
      pixel = blend( bg, c, deltabright * 8);
    } else { 
      // if the new pixel is not at all brighter than the background color,
      // just use the background color.
      pixel = bg;
    }
  }
}


//  This function takes a time in pseudo-milliseconds,
//  figures out brightness = f( time ), and also hue = f( time )
//  The 'low digits' of the millisecond time are used as 
//  input to the brightness wave function.  
//  The 'high digits' are used to select a color, so that the color
//  does not change over the course of the fade-in, fade-out
//  of one cycle of the brightness wave function.
//  The 'high digits' are also used to determine whether this pixel
//  should light at all during this cycle, based on the TWINKLE_DENSITY.
CRGB computeOneTwinkle( uint32_t ms, uint8_t salt)
{
  uint16_t ticks = ms >> (8-TWINKLE_SPEED);
  uint8_t fastcycle8 = ticks;
  uint16_t slowcycle16 = (ticks >> 8) + salt;
  slowcycle16 += sin8( slowcycle16);
  slowcycle16 =  (slowcycle16 * 2053) + 1384;
  uint8_t slowcycle8 = (slowcycle16 & 0xFF) + (slowcycle16 >> 8);
  
  uint8_t bright = 0;
  if( ((slowcycle8 & 0x0E)/2) < TWINKLE_DENSITY) {
    bright = attackDecayWave8( fastcycle8);
  }

  uint8_t hue = slowcycle8 - salt;
  CRGB c;
  if( bright > 0) {
    c = ColorFromPalette( gCurrentPalette, hue, bright, NOBLEND);
    if( COOL_LIKE_INCANDESCENT == 1 ) {
      coolLikeIncandescent( c, fastcycle8);
    }
  } else {
    c = CRGB::Black;
  }
  return c;
}


// This function is like 'triwave8', which produces a 
// symmetrical up-and-down triangle sawtooth waveform, except that this
// function produces a triangle wave with a faster attack and a slower decay:
//
//     / \ 
//    /     \ 
//   /         \ 
//  /             \ 
//

uint8_t attackDecayWave8( uint8_t i)
{
  if( i < 86) {
    return i * 3;
  } else {
    i -= 86;
    return 255 - (i + (i/2));
  }
}

// This function takes a pixel, and if its in the 'fading down'
// part of the cycle, it adjusts the color a little bit like the 
// way that incandescent bulbs fade toward 'red' as they dim.
void coolLikeIncandescent( CRGB& c, uint8_t phase)
{
  if( phase < 128) return;

  uint8_t cooling = (phase - 128) >> 4;
  c.g = qsub8( c.g, cooling);
  c.b = qsub8( c.b, cooling * 2);
}

// A mostly red palette with green accents and white trim.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedGreenWhite_p FL_PROGMEM =
{  CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red };



// A red and white striped palette
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 RedWhite_p FL_PROGMEM =
{  CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red };

// A mostly blue palette with white accents.
// "CRGB::Gray" is used as white to keep the brightness more uniform.
const TProgmemRGBPalette16 BlueWhite_p FL_PROGMEM =
{  CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red, 
   CRGB::Red, CRGB::Red, CRGB::Red, CRGB::Red };


// A palette of soft snowflakes with the occasional bright one
const TProgmemRGBPalette16 Snow_p FL_PROGMEM =
{  0x304048, 0x304048, 0x304048, 0x304048,
   0x304048, 0x304048, 0x304048, 0x304048,
   0x304048, 0x304048, 0x304048, 0x304048,
   0x304048, 0x304048, 0x304048, 0xE0F0FF };

// A palette reminiscent of large 'old-school' C9-size tree lights
// in the five classic colors: red, orange, green, blue, and white.
#define C9_Red    0xB80400

const TProgmemRGBPalette16 RetroC9_p FL_PROGMEM =
{  C9_Red,    C9_Red, C9_Red,    C9_Red,
   C9_Red,    C9_Red,    C9_Red,    C9_Red,
   C9_Red,    C9_Red,    C9_Red,    C9_Red,
   C9_Red,   C9_Red,   C9_Red,
   C9_Red
};

// Add or remove palette names from this list to control which color
// palettes are used, and in what order.
const TProgmemRGBPalette16* ActivePaletteList[] = {
  &RetroC9_p,
};


// Advance to the next color palette in the list (above).
void chooseNextColorPalette( CRGBPalette16& pal)
{
  const uint8_t numberOfPalettes = sizeof(ActivePaletteList) / sizeof(ActivePaletteList[0]);
  static uint8_t whichPalette = -1; 
  whichPalette = addmod8( whichPalette, 1, numberOfPalettes);

  pal = *(ActivePaletteList[whichPalette]);

???

'CRGBArray' does not name a type

Na denne.

Das Beispiel wurde unvollständig kopiert.