Led matrix changing code

Hi everyone I am quite stuck on the following problem: how should i change the code underneath to make sure it wordt on eight 8x8 led matrixes instead of two 8x8 led matrixes (to make the hourglass shape bigger). Video is from: Arduino Hourglass | DIY | LED Hourglass - YouTube

The code:

#include "Arduino.h"
#include "LedControl.h"
#include "Delay.h"

#define  MATRIX_A  1
#define MATRIX_B  0

// Values are 260/330/400
#define ACC_THRESHOLD_LOW 300
#define ACC_THRESHOLD_HIGH 360

// Matrix
#define PIN_DATAIN 5
#define PIN_CLK 4
#define PIN_LOAD 6

// Accelerometer
#define PIN_X A1
#define PIN_Y A2

// Rotary Encoder
#define PIN_ENC_1 3
#define PIN_ENC_2 2
#define PIN_ENC_BUTTON 7

#define PIN_BUZZER 14

// This takes into account how the matrixes are mounted
#define ROTATION_OFFSET 90

// in milliseconds
#define DEBOUNCE_THRESHOLD 500

#define DELAY_FRAME 100

#define DEBUG_OUTPUT 1

#define MODE_HOURGLASS 0
#define MODE_SETMINUTES 1
#define MODE_SETHOURS 2

byte delayHours = 0;
byte delayMinutes = 1;
int mode = MODE_HOURGLASS;
int gravity;
LedControl lc = LedControl(PIN_DATAIN, PIN_CLK, PIN_LOAD, 2);
NonBlockDelay d;
int resetCounter = 0;
bool alarmWentOff = false;


/**
 * Get delay between particle drops (in seconds)
 */
long getDelayDrop() {
  // since we have exactly 60 particles we don't have to multiply by 60 and then divide by the number of particles again :)
  return delayMinutes + delayHours * 60;
}


#if DEBUG_OUTPUT
void printmatrix() {
  Serial.println(" 0123-4567 ");
  for (int y = 0; y<8; y++) {
    if (y == 4) {
      Serial.println("|----|----|");
    }
    Serial.print(y);
    for (int x = 0; x<8; x++) {
      if (x == 4) {
        Serial.print("|");
      }
      Serial.print(lc.getXY(0,x,y) ? "X" :" ");
    }
    Serial.println("|");
  }
  Serial.println("-----------");
}
#endif



coord getDown(int x, int y) {
  coord xy;
  xy.x = x-1;
  xy.y = y+1;
  return xy;
}
coord getLeft(int x, int y) {
  coord xy;
  xy.x = x-1;
  xy.y = y;
  return xy;
}
coord getRight(int x, int y) {
  coord xy;
  xy.x = x;
  xy.y = y+1;
  return xy;
}



bool canGoLeft(int addr, int x, int y) {
  if (x == 0) return false; // not available
  return !lc.getXY(addr, getLeft(x, y)); // you can go there if this is empty
}
bool canGoRight(int addr, int x, int y) {
  if (y == 7) return false; // not available
  return !lc.getXY(addr, getRight(x, y)); // you can go there if this is empty
}
bool canGoDown(int addr, int x, int y) {
  if (y == 7) return false; // not available
  if (x == 0) return false; // not available
  if (!canGoLeft(addr, x, y)) return false;
  if (!canGoRight(addr, x, y)) return false;
  return !lc.getXY(addr, getDown(x, y)); // you can go there if this is empty
}



void goDown(int addr, int x, int y) {
  lc.setXY(addr, x, y, false);
  lc.setXY(addr, getDown(x,y), true);
}
void goLeft(int addr, int x, int y) {
  lc.setXY(addr, x, y, false);
  lc.setXY(addr, getLeft(x,y), true);
}
void goRight(int addr, int x, int y) {
  lc.setXY(addr, x, y, false);
  lc.setXY(addr, getRight(x,y), true);
}


int countParticles(int addr) {
  int c = 0;
  for (byte y=0; y<8; y++) {
    for (byte x=0; x<8; x++) {
      if (lc.getXY(addr, x, y)) {
        c++;
      }
    }
  }
  return c;
}


bool moveParticle(int addr, int x, int y) {
  if (!lc.getXY(addr,x,y)) {
    return false;
  }

  bool can_GoLeft = canGoLeft(addr, x, y);
  bool can_GoRight = canGoRight(addr, x, y);

  if (!can_GoLeft && !can_GoRight) {
    return false; // we're stuck
  }

  bool can_GoDown = canGoDown(addr, x, y);

  if (can_GoDown) {
    goDown(addr, x, y);
  } else if (can_GoLeft&& !can_GoRight) {
    goLeft(addr, x, y);
  } else if (can_GoRight && !can_GoLeft) {
    goRight(addr, x, y);
  } else if (random(2) == 1) { // we can go left and right, but not down
    goLeft(addr, x, y);
  } else {
    goRight(addr, x, y);
  }
  return true;
}



void fill(int addr, int maxcount) {
  int n = 8;
  byte x,y;
  int count = 0;
  for (byte slice = 0; slice < 2*n-1; ++slice) {
    byte z = slice<n ? 0 : slice-n + 1;
    for (byte j = z; j <= slice-z; ++j) {
      y = 7-j;
      x = (slice-j);
      lc.setXY(addr, x, y, (++count <= maxcount));
    }
  }
}



/**
 * Detect orientation using the accelerometer
 *
 *     | up | right | left | down |
 * --------------------------------
 * 400 |    |       | y    | x    |
 * 330 | y  | x     | x    | y    |
 * 260 | x  | y     |      |      |
 */
int getGravity() {
  int x = analogRead(PIN_X);
  int y = analogRead(PIN_Y);
  if (y < ACC_THRESHOLD_LOW)  { return 0;   }
  if (x > ACC_THRESHOLD_HIGH) { return 90;  }
  if (y > ACC_THRESHOLD_HIGH) { return 180; }
  if (x < ACC_THRESHOLD_LOW)  { return 270; }
}


int getTopMatrix() {
  return (getGravity() == 90) ? MATRIX_A : MATRIX_B;
}
int getBottomMatrix() {
  return (getGravity() != 90) ? MATRIX_A : MATRIX_B;
}



void resetTime() {
  for (byte i=0; i<2; i++) {
    lc.clearDisplay(i);
  }
  fill(getTopMatrix(), 60);
  d.Delay(getDelayDrop() * 1000);
}



/**
 * Traverse matrix and check if particles need to be moved
 */
bool updateMatrix() {
  int n = 8;
  bool somethingMoved = false;
  byte x,y;
  bool direction;
  for (byte slice = 0; slice < 2*n-1; ++slice) {
    direction = (random(2) == 1); // randomize if we scan from left to right or from right to left, so the grain doesn't always fall the same direction
    byte z = slice<n ? 0 : slice-n + 1;
    for (byte j = z; j <= slice-z; ++j) {
      y = direction ? (7-j) : (7-(slice-j));
      x = direction ? (slice-j) : j;
      // for (byte d=0; d<2; d++) { lc.invertXY(0, x, y); delay(50); }
      if (moveParticle(MATRIX_B, x, y)) {
        somethingMoved = true;
      };
      if (moveParticle(MATRIX_A, x, y)) {
        somethingMoved = true;
      }
    }
  }
  return somethingMoved;
}



/**
 * Let a particle go from one matrix to the other
 */
boolean dropParticle() {
  if (d.Timeout()) {
    d.Delay(getDelayDrop() * 1000);
    if (gravity == 0 || gravity == 180) {
      if ((lc.getRawXY(MATRIX_A, 0, 0) && !lc.getRawXY(MATRIX_B, 7, 7)) ||
          (!lc.getRawXY(MATRIX_A, 0, 0) && lc.getRawXY(MATRIX_B, 7, 7))
      ) {
        // for (byte d=0; d<8; d++) { lc.invertXY(0, 0, 7); delay(50); }
        lc.invertRawXY(MATRIX_A, 0, 0);
        lc.invertRawXY(MATRIX_B, 7, 7);
        tone(PIN_BUZZER, 440, 10);
        return true;
      }
    }
  }
  return false;
}



void alarm() {
  for (int i=0; i<5; i++) {
    tone(PIN_BUZZER, 440, 200);
    delay(1000);
  }
}



void resetCheck() {
  int z = analogRead(A3);
  if (z > ACC_THRESHOLD_HIGH || z < ACC_THRESHOLD_LOW) {
    resetCounter++;
    Serial.println(resetCounter);
  } else {
    resetCounter = 0;
  }
  if (resetCounter > 20) {
    Serial.println("RESET!");
    resetTime();
    resetCounter = 0;
  }
}



void displayLetter(char letter, int matrix) {
  // Serial.print("Letter: ");
  // Serial.println(letter);
  lc.clearDisplay(matrix);
  lc.setXY(matrix, 1,4, true);
  lc.setXY(matrix, 2,3, true);
  lc.setXY(matrix, 3,2, true);
  lc.setXY(matrix, 4,1, true);

  lc.setXY(matrix, 3,6, true);
  lc.setXY(matrix, 4,5, true);
  lc.setXY(matrix, 5,4, true);
  lc.setXY(matrix, 6,3, true);

  if (letter == 'M') {
    lc.setXY(matrix, 4,2, true);
    lc.setXY(matrix, 4,3, true);
    lc.setXY(matrix, 5,3, true);
  }
  if (letter == 'H') {
    lc.setXY(matrix, 3,3, true);
    lc.setXY(matrix, 4,4, true);
  }
}



void renderSetMinutes() {
  fill(getTopMatrix(), delayMinutes);
  displayLetter('M', getBottomMatrix());
}
void renderSetHours() {
  fill(getTopMatrix(), delayHours);
  displayLetter('H', getBottomMatrix());
}




void knobClockwise() {
  Serial.println("Clockwise");
  if (mode == MODE_SETHOURS) {
    delayHours = constrain(delayHours+1, 0, 64);
    renderSetHours();
  } else if(mode == MODE_SETMINUTES) {
    delayMinutes = constrain(delayMinutes+1, 0, 64);
    renderSetMinutes();
  }
  Serial.print("Delay: ");
  Serial.println(getDelayDrop());
}
void knobCounterClockwise() {
  Serial.println("Counterclockwise");
  if (mode == MODE_SETHOURS) {
    delayHours = constrain(delayHours-1, 0, 64);
    renderSetHours();
  } else if (mode == MODE_SETMINUTES) {
    delayMinutes = constrain(delayMinutes-1, 0, 64);
    renderSetMinutes();
  }
  Serial.print("Delay: ");
  Serial.println(getDelayDrop());
}



volatile int lastEncoded = 0;
volatile long encoderValue = 0;
long lastencoderValue = 0;
long lastValue = 0;
void updateEncoder() {
  int MSB = digitalRead(PIN_ENC_1); //MSB = most significant bit
  int LSB = digitalRead(PIN_ENC_2); //LSB = least significant bit

  int encoded = (MSB << 1) |LSB; //converting the 2 pin value to single number
  int sum  = (lastEncoded << 2) | encoded; //adding it to the previous encoded value

  if(sum == 0b1101 || sum == 0b0100 || sum == 0b0010 || sum == 0b1011) encoderValue--;
  if(sum == 0b1110 || sum == 0b0111 || sum == 0b0001 || sum == 0b1000) encoderValue++;

  // Serial.print("Value: ");
  // Serial.println(encoderValue);
  if ((encoderValue % 4) == 0) {
    int value = encoderValue / 4;
    if (value > lastValue) knobClockwise();
    if (value < lastValue) knobCounterClockwise();
    lastValue = value;
  }
  lastEncoded = encoded; //store this value for next time
}



/**
 * Button callback (incl. software debouncer)
 * This switches between the modes (normal, set minutes, set hours)
 */
volatile unsigned long lastButtonPushMillis;
void buttonPush() {
  if((long)(millis() - lastButtonPushMillis) >= DEBOUNCE_THRESHOLD) {
    mode = (mode+1) % 3;
    Serial.print("Switched mode to: ");
    Serial.println(mode);
    lastButtonPushMillis = millis();

    if (mode == MODE_SETMINUTES) {
      lc.backup(); // we only need to back when switching from MODE_HOURGLASS->MODE_SETMINUTES
      renderSetMinutes();
    }
    if (mode == MODE_SETHOURS) {
      renderSetHours();
    }
    if (mode == MODE_HOURGLASS) {
      lc.clearDisplay(0);
      lc.clearDisplay(1);
      lc.restore();
      resetTime();
    }
  }
}



/**
 * Setup
 */
void setup() {
  Serial.begin(9600);

  // while (!Serial) {
  //   ; // wait for serial port to connect. Needed for native USB
  // }

  // setup rotary encoder
  pinMode(PIN_ENC_1, INPUT);
  pinMode(PIN_ENC_2, INPUT);
  pinMode(PIN_ENC_BUTTON, INPUT);
  digitalWrite(PIN_ENC_1, HIGH); //turn pullup resistor on
  digitalWrite(PIN_ENC_2, HIGH); //turn pullup resistor on
  digitalWrite(PIN_ENC_BUTTON, HIGH); //turn pullup resistor on
  attachInterrupt(digitalPinToInterrupt(PIN_ENC_1), updateEncoder, CHANGE);
  attachInterrupt(digitalPinToInterrupt(PIN_ENC_2), updateEncoder, CHANGE);
  attachInterrupt(digitalPinToInterrupt(PIN_ENC_BUTTON), buttonPush, RISING);

  // Serial.println(digitalPinToInterrupt(PIN_ENC_1));
  // Serial.println(digitalPinToInterrupt(PIN_ENC_2));
  // Serial.println(digitalPinToInterrupt(PIN_ENC_BUTTON));

  randomSeed(analogRead(A0));

  // init displays
  for (byte i=0; i<2; i++) {
    lc.shutdown(i,false);
    lc.setIntensity(i,0);
  }

  resetTime();
}



/**
 * Main loop
 */
void loop() {
  delay(DELAY_FRAME);

  // update the driver's rotation setting. For the rest of the code we pretend "down" is still 0,0 and "up" is 7,7
  gravity = getGravity();
  lc.setRotation((ROTATION_OFFSET + gravity) % 360);

  // handle special modes
  if (mode == MODE_SETMINUTES) {
    renderSetMinutes(); return;
  } else if (mode == MODE_SETHOURS) {
    renderSetHours(); return;
  }

  // resetCheck(); // reset now happens when pushing a button
  bool moved = updateMatrix();
  bool dropped = dropParticle();

  // alarm when everything is in the bottom part
  if (!moved && !dropped && !alarmWentOff && (countParticles(getTopMatrix()) == 0)) {
    alarmWentOff = true;
    alarm();
  }
  // reset alarm flag next time a particle was dropped
  if (dropped) {
    alarmWentOff = false;
  }
}

Hope someone can help because I am quite stuck on this question :slight_smile:

This leads me to believe that the local library file #include "LedControl.h" allows for more matrices, for example,

#define  MATRIX_C  2
#define MATRIX_D 3

It probably has a limit to the number.

Hi thanks for the quick response. The ledcontrol.h code is:

#ifndef LedControl_h
#define LedControl_h

#include <avr/pgmspace.h>

#if (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#endif

struct coord {
  int x;
  int y;
};

/*
 * Segments to be switched on for characters and digits on
 * 7-Segment Displays
 */
const static byte charTable [] PROGMEM  = {
    B01111110,B00110000,B01101101,B01111001,B00110011,B01011011,B01011111,B01110000,
    B01111111,B01111011,B01110111,B00011111,B00001101,B00111101,B01001111,B01000111,
    B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,
    B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,
    B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,
    B00000000,B00000000,B00000000,B00000000,B10000000,B00000001,B10000000,B00000000,
    B01111110,B00110000,B01101101,B01111001,B00110011,B01011011,B01011111,B01110000,
    B01111111,B01111011,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,
    B00000000,B01110111,B00011111,B00001101,B00111101,B01001111,B01000111,B00000000,
    B00110111,B00000000,B00000000,B00000000,B00001110,B00000000,B00000000,B00000000,
    B01100111,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,
    B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00001000,
    B00000000,B01110111,B00011111,B00001101,B00111101,B01001111,B01000111,B00000000,
    B00110111,B00000000,B00000000,B00000000,B00001110,B00000000,B00010101,B00011101,
    B01100111,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,
    B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000,B00000000
};

class LedControl {
    private :
        /* The array for shifting the data to the devices */
        byte spidata[16];
        /* Send out a single command to the device */
        void spiTransfer(int addr, byte opcode, byte data);

        /* We keep track of the led-status for all 8 devices in this array */
        byte status[64];
        byte backupStatus[64];
        /* Data is shifted out of this pin*/
        int SPI_MOSI;
        /* The clock is signaled on this pin */
        int SPI_CLK;
        /* This one is driven LOW for chip selectzion */
        int SPI_CS;
        /* The maximum number of devices we use */
        int maxDevices;

        int rotation;

    public:
        /*
         * Create a new controler
         * Params :
         * dataPin		pin on the Arduino where data gets shifted out
         * clockPin		pin for the clock
         * csPin		pin for selecting the device
         * numDevices	maximum number of devices that can be controled
         */
        LedControl(int dataPin, int clkPin, int csPin, int numDevices=1);

        void setRotation(int rot);

        /*
         * Gets the number of devices attached to this LedControl.
         * Returns :
         * int	the number of devices on this LedControl
         */
        int getDeviceCount();

        /*
         * Set the shutdown (power saving) mode for the device
         * Params :
         * addr	The address of the display to control
         * status	If true the device goes into power-down mode. Set to false
         *		for normal operation.
         */
        void shutdown(int addr, bool status);

        /*
         * Set the number of digits (or rows) to be displayed.
         * See datasheet for sideeffects of the scanlimit on the brightness
         * of the display.
         * Params :
         * addr	address of the display to control
         * limit	number of digits to be displayed (1..8)
         */
        void setScanLimit(int addr, int limit);

        /*
         * Set the brightness of the display.
         * Params:
         * addr		the address of the display to control
         * intensity	the brightness of the display. (0..15)
         */
        void setIntensity(int addr, int intensity);

        /*
         * Switch all Leds on the display off.
         * Params:
         * addr	address of the display to control
         */
        void clearDisplay(int addr);

        /*
         * Set the status of a single Led.
         * Params :
         * addr	address of the display
         * row	the row of the Led (0..7)
         * col	the column of the Led (0..7)
         * state	If true the led is switched on,
         *		if false it is switched off
         */

        void setRawXY(int addr, int x, int y, boolean state);
        boolean getRawXY(int addr, int x, int y);
        void invertRawXY(int addr, int x, int y);

        void setLed(int addr, int row, int col, boolean state);
        void setXY(int addr, int x, int y, boolean state);
        void setXY(int addr, coord xy, boolean state);
        void invertXY(int addr, int x, int y);
        boolean getLed(int addr, int row, int col);
        boolean getXY(int addr, int x, int y);
        boolean getXY(int addr, coord xy);
        coord transform(coord xy);
        coord transform(int x, int y);
        coord flipHorizontally(coord xy);
        coord flipVertically(coord xy);
        coord rotate90(coord xy);
        coord rotate180(coord xy);
        coord rotate270(coord xy);

        void backup();
        void restore();

        /*
         * Set all 8 Led's in a row to a new state
         * Params:
         * addr	address of the display
         * row	row which is to be set (0..7)
         * value	each bit set to 1 will light up the
         *		corresponding Led.
         */
        void setRow(int addr, int row, byte value);

        /*
         * Set all 8 Led's in a column to a new state
         * Params:
         * addr	address of the display
         * col	column which is to be set (0..7)
         * value	each bit set to 1 will light up the
         *		corresponding Led.
         */
        void setColumn(int addr, int col, byte value);

        /*
         * Display a hexadecimal digit on a 7-Segment Display
         * Params:
         * addr	address of the display
         * digit	the position of the digit on the display (0..7)
         * value	the value to be displayed. (0x00..0x0F)
         * dp	sets the decimal point.
         */
        void setDigit(int addr, int digit, byte value, boolean dp);

        /*
         * Display a character on a 7-Segment display.
         * There are only a few characters that make sense here :
         *	'0','1','2','3','4','5','6','7','8','9','0',
         *  'A','b','c','d','E','F','H','L','P',
         *  '.','-','_',' '
         * Params:
         * addr	address of the display
         * digit	the position of the character on the display (0..7)
         * value	the character to be displayed.
         * dp	sets the decimal point.
         */
        void setChar(int addr, int digit, char value, boolean dp);
};

#endif	//LedControl.h

Do you see here where the code needs to be changed?

Do you understand that this needs a complete program rewrite, changing the fonts and redesign a hardware?

This topic was automatically closed 180 days after the last reply. New replies are no longer allowed.