I extracted this from Wokwi as an experiment but have not studied it:
sketch.ino.elf: file format elf32-avr
Disassembly of section .text:
00000000 <__vectors>:
0: 0c 94 5d 00 jmp 0xba ; 0xba <__ctors_end>
4: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
8: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
c: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
10: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
14: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
18: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
1c: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
20: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
24: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
28: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
2c: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
30: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
34: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
38: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
3c: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
40: 0c 94 26 02 jmp 0x44c ; 0x44c <__vector_16>
44: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
48: 0c 94 96 02 jmp 0x52c ; 0x52c <__vector_18>
4c: 0c 94 70 02 jmp 0x4e0 ; 0x4e0 <__vector_19>
50: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
54: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
58: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
5c: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
60: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
64: 0c 94 85 00 jmp 0x10a ; 0x10a <__bad_interrupt>
00000068 <__trampolines_end>:
68: 00 00 nop
6a: 00 00 nop
6c: 24 00 .word 0x0024 ; ????
6e: 27 00 .word 0x0027 ; ????
70: 2a 00 .word 0x002a ; ????
00000072 <port_to_output_PGM>:
72: 00 00 00 00 25 00 28 00 2b 00 ....%.(.+.
0000007c <digital_pin_to_port_PGM>:
7c: 04 04 04 04 04 04 04 04 02 02 02 02 02 02 03 03 ................
8c: 03 03 03 03 ....
00000090 <digital_pin_to_bit_mask_PGM>:
90: 01 02 04 08 10 20 40 80 01 02 04 08 10 20 01 02 ..... @...... ..
a0: 04 08 10 20 ...
000000a4 <digital_pin_to_timer_PGM>:
a4: 00 00 00 08 00 02 01 00 00 03 04 07 00 00 00 00 ................
b4: 00 00 00 00 ....
000000b8 <__ctors_start>:
b8: e9 03 fmulsu r22, r17
000000ba <__ctors_end>:
ba: 11 24 eor r1, r1
bc: 1f be out 0x3f, r1 ; 63
be: cf ef ldi r28, 0xFF ; 255
c0: d8 e0 ldi r29, 0x08 ; 8
c2: de bf out 0x3e, r29 ; 62
c4: cd bf out 0x3d, r28 ; 61
000000c6 <__do_copy_data>:
c6: 11 e0 ldi r17, 0x01 ; 1
c8: a0 e0 ldi r26, 0x00 ; 0
ca: b1 e0 ldi r27, 0x01 ; 1
cc: e0 e8 ldi r30, 0x80 ; 128
ce: f8 e0 ldi r31, 0x08 ; 8
d0: 02 c0 rjmp .+4 ; 0xd6 <__do_copy_data+0x10>
d2: 05 90 lpm r0, Z+
d4: 0d 92 st X+, r0
d6: aa 36 cpi r26, 0x6A ; 106
d8: b1 07 cpc r27, r17
da: d9 f7 brne .-10 ; 0xd2 <__do_copy_data+0xc>
000000dc <__do_clear_bss>:
dc: 22 e0 ldi r18, 0x02 ; 2
de: aa e6 ldi r26, 0x6A ; 106
e0: b1 e0 ldi r27, 0x01 ; 1
e2: 01 c0 rjmp .+2 ; 0xe6 <.do_clear_bss_start>
000000e4 <.do_clear_bss_loop>:
e4: 1d 92 st X+, r1
000000e6 <.do_clear_bss_start>:
e6: a0 31 cpi r26, 0x10 ; 16
e8: b2 07 cpc r27, r18
ea: e1 f7 brne .-8 ; 0xe4 <.do_clear_bss_loop>
000000ec <__do_global_ctors>:
ec: 10 e0 ldi r17, 0x00 ; 0
ee: cd e5 ldi r28, 0x5D ; 93
f0: d0 e0 ldi r29, 0x00 ; 0
f2: 04 c0 rjmp .+8 ; 0xfc <__do_global_ctors+0x10>
f4: 21 97 sbiw r28, 0x01 ; 1
f6: fe 01 movw r30, r28
f8: 0e 94 38 04 call 0x870 ; 0x870 <__tablejump2__>
fc: cc 35 cpi r28, 0x5C ; 92
fe: d1 07 cpc r29, r17
100: c9 f7 brne .-14 ; 0xf4 <__do_global_ctors+0x8>
102: 0e 94 c8 02 call 0x590 ; 0x590 <main>
106: 0c 94 3e 04 jmp 0x87c ; 0x87c <_exit>
0000010a <__bad_interrupt>:
10a: 0c 94 00 00 jmp 0 ; 0x0 <__vectors>
0000010e <_ZN5Print5writeEPKhj>:
// Public Methods //////////////////////////////////////////////////////////////
/* default implementation: may be overridden */
size_t Print::write(const uint8_t *buffer, size_t size)
{
10e: af 92 push r10
110: bf 92 push r11
112: cf 92 push r12
114: df 92 push r13
116: ef 92 push r14
118: ff 92 push r15
11a: 0f 93 push r16
11c: 1f 93 push r17
11e: cf 93 push r28
120: df 93 push r29
122: 6c 01 movw r12, r24
124: 7b 01 movw r14, r22
126: 8b 01 movw r16, r22
128: 04 0f add r16, r20
12a: 15 1f adc r17, r21
12c: eb 01 movw r28, r22
12e: 5e 01 movw r10, r28
130: ae 18 sub r10, r14
132: bf 08 sbc r11, r15
size_t n = 0;
while (size--) {
134: c0 17 cp r28, r16
136: d1 07 cpc r29, r17
138: 59 f0 breq .+22 ; 0x150 <_ZN5Print5writeEPKhj+0x42>
if (write(*buffer++)) n++;
13a: 69 91 ld r22, Y+
13c: d6 01 movw r26, r12
13e: ed 91 ld r30, X+
140: fc 91 ld r31, X
142: 01 90 ld r0, Z+
144: f0 81 ld r31, Z
146: e0 2d mov r30, r0
148: c6 01 movw r24, r12
14a: 09 95 icall
14c: 89 2b or r24, r25
14e: 79 f7 brne .-34 ; 0x12e <_ZN5Print5writeEPKhj+0x20>
else break;
}
return n;
}
150: c5 01 movw r24, r10
152: df 91 pop r29
154: cf 91 pop r28
156: 1f 91 pop r17
158: 0f 91 pop r16
15a: ff 90 pop r15
15c: ef 90 pop r14
15e: df 90 pop r13
160: cf 90 pop r12
162: bf 90 pop r11
164: af 90 pop r10
166: 08 95 ret
00000168 <_ZN14HardwareSerial17availableForWriteEv>:
{
tx_buffer_index_t head;
tx_buffer_index_t tail;
TX_BUFFER_ATOMIC {
head = _tx_buffer_head;
168: fc 01 movw r30, r24
16a: 53 8d ldd r21, Z+27 ; 0x1b
tail = _tx_buffer_tail;
16c: 44 8d ldd r20, Z+28 ; 0x1c
16e: 25 2f mov r18, r21
170: 30 e0 ldi r19, 0x00 ; 0
172: 84 2f mov r24, r20
174: 90 e0 ldi r25, 0x00 ; 0
}
if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
176: 82 1b sub r24, r18
178: 93 0b sbc r25, r19
17a: 54 17 cp r21, r20
17c: 10 f0 brcs .+4 ; 0x182 <_ZN14HardwareSerial17availableForWriteEv+0x1a>
17e: cf 96 adiw r24, 0x3f ; 63
180: 08 95 ret
return tail - head - 1;
182: 01 97 sbiw r24, 0x01 ; 1
}
184: 08 95 ret
00000186 <_ZN14HardwareSerial4readEv>:
return _rx_buffer[_rx_buffer_tail];
}
}
int HardwareSerial::read(void)
{
186: fc 01 movw r30, r24
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer_head == _rx_buffer_tail) {
188: 91 8d ldd r25, Z+25 ; 0x19
18a: 82 8d ldd r24, Z+26 ; 0x1a
18c: 98 17 cp r25, r24
18e: 61 f0 breq .+24 ; 0x1a8 <_ZN14HardwareSerial4readEv+0x22>
return -1;
} else {
unsigned char c = _rx_buffer[_rx_buffer_tail];
190: a2 8d ldd r26, Z+26 ; 0x1a
192: ae 0f add r26, r30
194: bf 2f mov r27, r31
196: b1 1d adc r27, r1
198: 5d 96 adiw r26, 0x1d ; 29
19a: 8c 91 ld r24, X
_rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE;
19c: 92 8d ldd r25, Z+26 ; 0x1a
19e: 9f 5f subi r25, 0xFF ; 255
1a0: 9f 73 andi r25, 0x3F ; 63
1a2: 92 8f std Z+26, r25 ; 0x1a
return c;
1a4: 90 e0 ldi r25, 0x00 ; 0
1a6: 08 95 ret
int HardwareSerial::read(void)
{
// if the head isn't ahead of the tail, we don't have any characters
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
1a8: 8f ef ldi r24, 0xFF ; 255
1aa: 9f ef ldi r25, 0xFF ; 255
} else {
unsigned char c = _rx_buffer[_rx_buffer_tail];
_rx_buffer_tail = (rx_buffer_index_t)(_rx_buffer_tail + 1) % SERIAL_RX_BUFFER_SIZE;
return c;
}
}
1ac: 08 95 ret
000001ae <_ZN14HardwareSerial4peekEv>:
{
return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE;
}
int HardwareSerial::peek(void)
{
1ae: fc 01 movw r30, r24
if (_rx_buffer_head == _rx_buffer_tail) {
1b0: 91 8d ldd r25, Z+25 ; 0x19
1b2: 82 8d ldd r24, Z+26 ; 0x1a
1b4: 98 17 cp r25, r24
1b6: 31 f0 breq .+12 ; 0x1c4 <_ZN14HardwareSerial4peekEv+0x16>
return -1;
} else {
return _rx_buffer[_rx_buffer_tail];
1b8: 82 8d ldd r24, Z+26 ; 0x1a
1ba: e8 0f add r30, r24
1bc: f1 1d adc r31, r1
1be: 85 8d ldd r24, Z+29 ; 0x1d
1c0: 90 e0 ldi r25, 0x00 ; 0
1c2: 08 95 ret
}
int HardwareSerial::peek(void)
{
if (_rx_buffer_head == _rx_buffer_tail) {
return -1;
1c4: 8f ef ldi r24, 0xFF ; 255
1c6: 9f ef ldi r25, 0xFF ; 255
} else {
return _rx_buffer[_rx_buffer_tail];
}
}
1c8: 08 95 ret
000001ca <_ZN14HardwareSerial9availableEv>:
// clear any received data
_rx_buffer_head = _rx_buffer_tail;
}
int HardwareSerial::available(void)
{
1ca: fc 01 movw r30, r24
return ((unsigned int)(SERIAL_RX_BUFFER_SIZE + _rx_buffer_head - _rx_buffer_tail)) % SERIAL_RX_BUFFER_SIZE;
1cc: 91 8d ldd r25, Z+25 ; 0x19
1ce: 22 8d ldd r18, Z+26 ; 0x1a
1d0: 89 2f mov r24, r25
1d2: 90 e0 ldi r25, 0x00 ; 0
1d4: 80 5c subi r24, 0xC0 ; 192
1d6: 9f 4f sbci r25, 0xFF ; 255
1d8: 82 1b sub r24, r18
1da: 91 09 sbc r25, r1
}
1dc: 8f 73 andi r24, 0x3F ; 63
1de: 99 27 eor r25, r25
1e0: 08 95 ret
000001e2 <_Z17Serial0_availablev>:
#endif
// Function that can be weakly referenced by serialEventRun to prevent
// pulling in this file if it's not otherwise used.
bool Serial0_available() {
return Serial.available();
1e2: 83 e7 ldi r24, 0x73 ; 115
1e4: 91 e0 ldi r25, 0x01 ; 1
1e6: 0e 94 e5 00 call 0x1ca ; 0x1ca <_ZN14HardwareSerial9availableEv>
1ea: 21 e0 ldi r18, 0x01 ; 1
1ec: 89 2b or r24, r25
1ee: 09 f4 brne .+2 ; 0x1f2 <_Z17Serial0_availablev+0x10>
1f0: 20 e0 ldi r18, 0x00 ; 0
}
1f2: 82 2f mov r24, r18
1f4: 08 95 ret
000001f6 <_Z14serialEventRunv>:
#endif
void serialEventRun(void)
{
#if defined(HAVE_HWSERIAL0)
if (Serial0_available && serialEvent && Serial0_available()) serialEvent();
1f6: 80 e0 ldi r24, 0x00 ; 0
1f8: 90 e0 ldi r25, 0x00 ; 0
1fa: 89 2b or r24, r25
1fc: 29 f0 breq .+10 ; 0x208 <_Z14serialEventRunv+0x12>
1fe: 0e 94 f1 00 call 0x1e2 ; 0x1e2 <_Z17Serial0_availablev>
202: 81 11 cpse r24, r1
204: 0c 94 00 00 jmp 0 ; 0x0 <__vectors>
if (Serial2_available && serialEvent2 && Serial2_available()) serialEvent2();
#endif
#if defined(HAVE_HWSERIAL3)
if (Serial3_available && serialEvent3 && Serial3_available()) serialEvent3();
#endif
}
208: 08 95 ret
0000020a <_ZN14HardwareSerial17_tx_udr_empty_irqEv>:
#endif
// Actual interrupt handlers //////////////////////////////////////////////////////////////
void HardwareSerial::_tx_udr_empty_irq(void)
{
20a: fc 01 movw r30, r24
// If interrupts are enabled, there must be more data in the output
// buffer. Send the next byte
unsigned char c = _tx_buffer[_tx_buffer_tail];
20c: a4 8d ldd r26, Z+28 ; 0x1c
20e: a8 0f add r26, r24
210: b9 2f mov r27, r25
212: b1 1d adc r27, r1
214: a3 5a subi r26, 0xA3 ; 163
216: bf 4f sbci r27, 0xFF ; 255
218: 2c 91 ld r18, X
_tx_buffer_tail = (_tx_buffer_tail + 1) % SERIAL_TX_BUFFER_SIZE;
21a: 84 8d ldd r24, Z+28 ; 0x1c
21c: 90 e0 ldi r25, 0x00 ; 0
21e: 01 96 adiw r24, 0x01 ; 1
220: 8f 73 andi r24, 0x3F ; 63
222: 99 27 eor r25, r25
224: 84 8f std Z+28, r24 ; 0x1c
*_udr = c;
226: a6 89 ldd r26, Z+22 ; 0x16
228: b7 89 ldd r27, Z+23 ; 0x17
22a: 2c 93 st X, r18
// location". This makes sure flush() won't return until the bytes
// actually got written. Other r/w bits are preserved, and zeroes
// written to the rest.
#ifdef MPCM0
*_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << MPCM0))) | (1 << TXC0);
22c: a0 89 ldd r26, Z+16 ; 0x10
22e: b1 89 ldd r27, Z+17 ; 0x11
230: 8c 91 ld r24, X
232: 83 70 andi r24, 0x03 ; 3
234: 80 64 ori r24, 0x40 ; 64
236: 8c 93 st X, r24
#else
*_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << TXC0)));
#endif
if (_tx_buffer_head == _tx_buffer_tail) {
238: 93 8d ldd r25, Z+27 ; 0x1b
23a: 84 8d ldd r24, Z+28 ; 0x1c
23c: 98 13 cpse r25, r24
23e: 06 c0 rjmp .+12 ; 0x24c <_ZN14HardwareSerial17_tx_udr_empty_irqEv+0x42>
// Buffer empty, so disable interrupts
cbi(*_ucsrb, UDRIE0);
240: 02 88 ldd r0, Z+18 ; 0x12
242: f3 89 ldd r31, Z+19 ; 0x13
244: e0 2d mov r30, r0
246: 80 81 ld r24, Z
248: 8f 7d andi r24, 0xDF ; 223
24a: 80 83 st Z, r24
}
}
24c: 08 95 ret
0000024e <_ZN14HardwareSerial5writeEh>:
// If we get here, nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
size_t HardwareSerial::write(uint8_t c)
{
24e: ef 92 push r14
250: ff 92 push r15
252: 0f 93 push r16
254: 1f 93 push r17
256: cf 93 push r28
258: df 93 push r29
25a: ec 01 movw r28, r24
_written = true;
25c: 81 e0 ldi r24, 0x01 ; 1
25e: 88 8f std Y+24, r24 ; 0x18
// If the buffer and the data register is empty, just write the byte
// to the data register and be done. This shortcut helps
// significantly improve the effective datarate at high (>
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
if (_tx_buffer_head == _tx_buffer_tail && bit_is_set(*_ucsra, UDRE0)) {
260: 9b 8d ldd r25, Y+27 ; 0x1b
262: 8c 8d ldd r24, Y+28 ; 0x1c
264: 98 13 cpse r25, r24
266: 1a c0 rjmp .+52 ; 0x29c <_ZN14HardwareSerial5writeEh+0x4e>
268: e8 89 ldd r30, Y+16 ; 0x10
26a: f9 89 ldd r31, Y+17 ; 0x11
26c: 80 81 ld r24, Z
26e: 85 ff sbrs r24, 5
270: 15 c0 rjmp .+42 ; 0x29c <_ZN14HardwareSerial5writeEh+0x4e>
// So writing UDR must happen first.
// Writing UDR and clearing TC must be done atomically, otherwise
// interrupts might delay the TXC clear so the byte written to UDR
// is transmitted (setting TXC) before clearing TXC. Then TXC will
// be cleared when no bytes are left, causing flush() to hang
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
272: 9f b7 in r25, 0x3f ; 63
return 1;
}
static __inline__ uint8_t __iCliRetVal(void)
{
cli();
274: f8 94 cli
*_udr = c;
276: ee 89 ldd r30, Y+22 ; 0x16
278: ff 89 ldd r31, Y+23 ; 0x17
27a: 60 83 st Z, r22
#ifdef MPCM0
*_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << MPCM0))) | (1 << TXC0);
27c: e8 89 ldd r30, Y+16 ; 0x10
27e: f9 89 ldd r31, Y+17 ; 0x11
280: 80 81 ld r24, Z
282: 83 70 andi r24, 0x03 ; 3
284: 80 64 ori r24, 0x40 ; 64
// make atomic to prevent execution of ISR between setting the
// head pointer and setting the interrupt flag resulting in buffer
// retransmission
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
_tx_buffer_head = i;
sbi(*_ucsrb, UDRIE0);
286: 80 83 st Z, r24
(void)__s;
}
static __inline__ void __iRestore(const uint8_t *__s)
{
SREG = *__s;
288: 9f bf out 0x3f, r25 ; 63
}
return 1;
}
28a: 81 e0 ldi r24, 0x01 ; 1
28c: 90 e0 ldi r25, 0x00 ; 0
28e: df 91 pop r29
290: cf 91 pop r28
292: 1f 91 pop r17
294: 0f 91 pop r16
296: ff 90 pop r15
298: ef 90 pop r14
29a: 08 95 ret
29c: f6 2e mov r15, r22
*_ucsra = ((*_ucsra) & ((1 << U2X0) | (1 << TXC0)));
#endif
}
return 1;
}
tx_buffer_index_t i = (_tx_buffer_head + 1) % SERIAL_TX_BUFFER_SIZE;
29e: 0b 8d ldd r16, Y+27 ; 0x1b
2a0: 10 e0 ldi r17, 0x00 ; 0
2a2: 0f 5f subi r16, 0xFF ; 255
2a4: 1f 4f sbci r17, 0xFF ; 255
2a6: 0f 73 andi r16, 0x3F ; 63
2a8: 11 27 eor r17, r17
2aa: e0 2e mov r14, r16
// If the output buffer is full, there's nothing for it other than to
// wait for the interrupt handler to empty it a bit
while (i == _tx_buffer_tail) {
2ac: 8c 8d ldd r24, Y+28 ; 0x1c
2ae: 8e 11 cpse r24, r14
2b0: 0c c0 rjmp .+24 ; 0x2ca <_ZN14HardwareSerial5writeEh+0x7c>
if (bit_is_clear(SREG, SREG_I)) {
2b2: 0f b6 in r0, 0x3f ; 63
2b4: 07 fc sbrc r0, 7
2b6: fa cf rjmp .-12 ; 0x2ac <_ZN14HardwareSerial5writeEh+0x5e>
// Interrupts are disabled, so we'll have to poll the data
// register empty flag ourselves. If it is set, pretend an
// interrupt has happened and call the handler to free up
// space for us.
if(bit_is_set(*_ucsra, UDRE0))
2b8: e8 89 ldd r30, Y+16 ; 0x10
2ba: f9 89 ldd r31, Y+17 ; 0x11
2bc: 80 81 ld r24, Z
2be: 85 ff sbrs r24, 5
2c0: f5 cf rjmp .-22 ; 0x2ac <_ZN14HardwareSerial5writeEh+0x5e>
_tx_udr_empty_irq();
2c2: ce 01 movw r24, r28
2c4: 0e 94 05 01 call 0x20a ; 0x20a <_ZN14HardwareSerial17_tx_udr_empty_irqEv>
2c8: f1 cf rjmp .-30 ; 0x2ac <_ZN14HardwareSerial5writeEh+0x5e>
} else {
// nop, the interrupt handler will free up space for us
}
}
_tx_buffer[_tx_buffer_head] = c;
2ca: eb 8d ldd r30, Y+27 ; 0x1b
2cc: ec 0f add r30, r28
2ce: fd 2f mov r31, r29
2d0: f1 1d adc r31, r1
2d2: e3 5a subi r30, 0xA3 ; 163
2d4: ff 4f sbci r31, 0xFF ; 255
2d6: f0 82 st Z, r15
// make atomic to prevent execution of ISR between setting the
// head pointer and setting the interrupt flag resulting in buffer
// retransmission
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
2d8: 9f b7 in r25, 0x3f ; 63
return 1;
}
static __inline__ uint8_t __iCliRetVal(void)
{
cli();
2da: f8 94 cli
_tx_buffer_head = i;
2dc: 0b 8f std Y+27, r16 ; 0x1b
sbi(*_ucsrb, UDRIE0);
2de: ea 89 ldd r30, Y+18 ; 0x12
2e0: fb 89 ldd r31, Y+19 ; 0x13
2e2: 80 81 ld r24, Z
2e4: 80 62 ori r24, 0x20 ; 32
2e6: cf cf rjmp .-98 ; 0x286 <_ZN14HardwareSerial5writeEh+0x38>
000002e8 <_ZN14HardwareSerial5flushEv>:
if (head >= tail) return SERIAL_TX_BUFFER_SIZE - 1 - head + tail;
return tail - head - 1;
}
void HardwareSerial::flush()
{
2e8: cf 93 push r28
2ea: df 93 push r29
2ec: ec 01 movw r28, r24
// If we have never written a byte, no need to flush. This special
// case is needed since there is no way to force the TXC (transmit
// complete) bit to 1 during initialization
if (!_written)
2ee: 88 8d ldd r24, Y+24 ; 0x18
2f0: 88 23 and r24, r24
2f2: b9 f0 breq .+46 ; 0x322 <_ZN14HardwareSerial5flushEv+0x3a>
return;
while (bit_is_set(*_ucsrb, UDRIE0) || bit_is_clear(*_ucsra, TXC0)) {
2f4: aa 89 ldd r26, Y+18 ; 0x12
2f6: bb 89 ldd r27, Y+19 ; 0x13
2f8: e8 89 ldd r30, Y+16 ; 0x10
2fa: f9 89 ldd r31, Y+17 ; 0x11
2fc: 8c 91 ld r24, X
2fe: 85 fd sbrc r24, 5
300: 03 c0 rjmp .+6 ; 0x308 <_ZN14HardwareSerial5flushEv+0x20>
302: 80 81 ld r24, Z
304: 86 fd sbrc r24, 6
306: 0d c0 rjmp .+26 ; 0x322 <_ZN14HardwareSerial5flushEv+0x3a>
if (bit_is_clear(SREG, SREG_I) && bit_is_set(*_ucsrb, UDRIE0))
308: 0f b6 in r0, 0x3f ; 63
30a: 07 fc sbrc r0, 7
30c: f7 cf rjmp .-18 ; 0x2fc <_ZN14HardwareSerial5flushEv+0x14>
30e: 8c 91 ld r24, X
310: 85 ff sbrs r24, 5
312: f2 cf rjmp .-28 ; 0x2f8 <_ZN14HardwareSerial5flushEv+0x10>
// Interrupts are globally disabled, but the DR empty
// interrupt should be enabled, so poll the DR empty flag to
// prevent deadlock
if (bit_is_set(*_ucsra, UDRE0))
314: 80 81 ld r24, Z
316: 85 ff sbrs r24, 5
318: ed cf rjmp .-38 ; 0x2f4 <_ZN14HardwareSerial5flushEv+0xc>
_tx_udr_empty_irq();
31a: ce 01 movw r24, r28
31c: 0e 94 05 01 call 0x20a ; 0x20a <_ZN14HardwareSerial17_tx_udr_empty_irqEv>
320: e9 cf rjmp .-46 ; 0x2f4 <_ZN14HardwareSerial5flushEv+0xc>
}
// If we get here, nothing is queued anymore (DRIE is disabled) and
// the hardware finished transmission (TXC is set).
}
322: df 91 pop r29
324: cf 91 pop r28
326: 08 95 ret
00000328 <_ZN5Print5writeEPKc.part.2.constprop.16>:
void clearWriteError() { setWriteError(0); }
virtual size_t write(uint8_t) = 0;
size_t write(const char *str) {
if (str == NULL) return 0;
return write((const uint8_t *)str, strlen(str));
328: fc 01 movw r30, r24
32a: 01 90 ld r0, Z+
32c: 00 20 and r0, r0
32e: e9 f7 brne .-6 ; 0x32a <_ZN5Print5writeEPKc.part.2.constprop.16+0x2>
330: 31 97 sbiw r30, 0x01 ; 1
332: af 01 movw r20, r30
334: 48 1b sub r20, r24
336: 59 0b sbc r21, r25
338: bc 01 movw r22, r24
33a: 83 e7 ldi r24, 0x73 ; 115
33c: 91 e0 ldi r25, 0x01 ; 1
33e: 0c 94 87 00 jmp 0x10e ; 0x10e <_ZN5Print5writeEPKhj>
00000342 <_ZN5Print7printlnEii.constprop.8>:
size_t n = print(b, base);
n += println();
return n;
}
size_t Print::println(int num, int base)
342: 8f 92 push r8
344: 9f 92 push r9
346: af 92 push r10
348: bf 92 push r11
34a: cf 92 push r12
34c: df 92 push r13
34e: ef 92 push r14
350: ff 92 push r15
352: 0f 93 push r16
354: 1f 93 push r17
356: cf 93 push r28
358: df 93 push r29
35a: cd b7 in r28, 0x3d ; 61
35c: de b7 in r29, 0x3e ; 62
35e: a1 97 sbiw r28, 0x21 ; 33
360: 0f b6 in r0, 0x3f ; 63
362: f8 94 cli
364: de bf out 0x3e, r29 ; 62
366: 0f be out 0x3f, r0 ; 63
368: cd bf out 0x3d, r28 ; 61
return print((unsigned long) b, base);
}
size_t Print::print(int n, int base)
{
return print((long) n, base);
36a: 6c 01 movw r12, r24
36c: 99 0f add r25, r25
36e: ee 08 sbc r14, r14
370: ff 08 sbc r15, r15
size_t Print::print(long n, int base)
{
if (base == 0) {
return write(n);
} else if (base == 10) {
if (n < 0) {
372: f7 fe sbrs r15, 7
374: 47 c0 rjmp .+142 ; 0x404 <__LOCK_REGION_LENGTH__+0x4>
return write(str);
}
size_t Print::print(char c)
{
return write(c);
376: 6d e2 ldi r22, 0x2D ; 45
378: 83 e7 ldi r24, 0x73 ; 115
37a: 91 e0 ldi r25, 0x01 ; 1
37c: 0e 94 27 01 call 0x24e ; 0x24e <_ZN14HardwareSerial5writeEh>
380: 8c 01 movw r16, r24
if (base == 0) {
return write(n);
} else if (base == 10) {
if (n < 0) {
int t = print('-');
n = -n;
382: 22 27 eor r18, r18
384: 33 27 eor r19, r19
386: a9 01 movw r20, r18
388: 2c 19 sub r18, r12
38a: 3d 09 sbc r19, r13
38c: 4e 09 sbc r20, r14
38e: 5f 09 sbc r21, r15
size_t Print::printNumber(unsigned long n, uint8_t base)
{
char buf[8 * sizeof(long) + 1]; // Assumes 8-bit chars plus zero byte.
char *str = &buf[sizeof(buf) - 1];
*str = '\0';
390: 19 a2 std Y+33, r1 ; 0x21
392: ce 01 movw r24, r28
394: 81 96 adiw r24, 0x21 ; 33
396: 7c 01 movw r14, r24
// prevent crash if called with base == 1
if (base < 2) base = 10;
do {
char c = n % base;
398: 9a e0 ldi r25, 0x0A ; 10
39a: 89 2e mov r8, r25
39c: 91 2c mov r9, r1
39e: a1 2c mov r10, r1
3a0: b1 2c mov r11, r1
n /= base;
3a2: ca 01 movw r24, r20
3a4: b9 01 movw r22, r18
3a6: a5 01 movw r20, r10
3a8: 94 01 movw r18, r8
3aa: 0e 94 16 04 call 0x82c ; 0x82c <__udivmodsi4>
*--str = c < 10 ? c + '0' : c + 'A' - 10;
3ae: 60 5d subi r22, 0xD0 ; 208
3b0: f7 01 movw r30, r14
3b2: 62 93 st -Z, r22
3b4: 7f 01 movw r14, r30
} while(n);
3b6: 21 15 cp r18, r1
3b8: 31 05 cpc r19, r1
3ba: 41 05 cpc r20, r1
3bc: 51 05 cpc r21, r1
3be: 89 f7 brne .-30 ; 0x3a2 <_ZN5Print7printlnEii.constprop.8+0x60>
int getWriteError() { return write_error; }
void clearWriteError() { setWriteError(0); }
virtual size_t write(uint8_t) = 0;
size_t write(const char *str) {
if (str == NULL) return 0;
3c0: 90 e0 ldi r25, 0x00 ; 0
3c2: 80 e0 ldi r24, 0x00 ; 0
3c4: 30 97 sbiw r30, 0x00 ; 0
3c6: 19 f0 breq .+6 ; 0x3ce <_ZN5Print7printlnEii.constprop.8+0x8c>
3c8: cf 01 movw r24, r30
3ca: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
return write(n);
} else if (base == 10) {
if (n < 0) {
int t = print('-');
n = -n;
return printNumber(n, 10) + t;
3ce: 08 0f add r16, r24
3d0: 19 1f adc r17, r25
3d2: 82 e1 ldi r24, 0x12 ; 18
3d4: 91 e0 ldi r25, 0x01 ; 1
3d6: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
size_t Print::println(int num, int base)
{
size_t n = print(num, base);
n += println();
return n;
}
3da: 80 0f add r24, r16
3dc: 91 1f adc r25, r17
3de: a1 96 adiw r28, 0x21 ; 33
3e0: 0f b6 in r0, 0x3f ; 63
3e2: f8 94 cli
3e4: de bf out 0x3e, r29 ; 62
3e6: 0f be out 0x3f, r0 ; 63
3e8: cd bf out 0x3d, r28 ; 61
3ea: df 91 pop r29
3ec: cf 91 pop r28
3ee: 1f 91 pop r17
3f0: 0f 91 pop r16
3f2: ff 90 pop r15
3f4: ef 90 pop r14
3f6: df 90 pop r13
3f8: cf 90 pop r12
3fa: bf 90 pop r11
3fc: af 90 pop r10
3fe: 9f 90 pop r9
400: 8f 90 pop r8
402: 08 95 ret
if (n < 0) {
int t = print('-');
n = -n;
return printNumber(n, 10) + t;
}
return printNumber(n, 10);
404: a7 01 movw r20, r14
406: 96 01 movw r18, r12
size_t Print::printNumber(unsigned long n, uint8_t base)
{
char buf[8 * sizeof(long) + 1]; // Assumes 8-bit chars plus zero byte.
char *str = &buf[sizeof(buf) - 1];
*str = '\0';
408: 19 a2 std Y+33, r1 ; 0x21
40a: 8e 01 movw r16, r28
40c: 0f 5d subi r16, 0xDF ; 223
40e: 1f 4f sbci r17, 0xFF ; 255
// prevent crash if called with base == 1
if (base < 2) base = 10;
do {
char c = n % base;
410: 8a e0 ldi r24, 0x0A ; 10
412: c8 2e mov r12, r24
414: d1 2c mov r13, r1
416: e1 2c mov r14, r1
418: f1 2c mov r15, r1
n /= base;
41a: ca 01 movw r24, r20
41c: b9 01 movw r22, r18
41e: a7 01 movw r20, r14
420: 96 01 movw r18, r12
422: 0e 94 16 04 call 0x82c ; 0x82c <__udivmodsi4>
*--str = c < 10 ? c + '0' : c + 'A' - 10;
426: 60 5d subi r22, 0xD0 ; 208
428: f8 01 movw r30, r16
42a: 62 93 st -Z, r22
42c: 8f 01 movw r16, r30
} while(n);
42e: 21 15 cp r18, r1
430: 31 05 cpc r19, r1
432: 41 05 cpc r20, r1
434: 51 05 cpc r21, r1
436: 89 f7 brne .-30 ; 0x41a <__LOCK_REGION_LENGTH__+0x1a>
438: 30 97 sbiw r30, 0x00 ; 0
43a: 29 f0 breq .+10 ; 0x446 <__LOCK_REGION_LENGTH__+0x46>
43c: cf 01 movw r24, r30
43e: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
442: 8c 01 movw r16, r24
444: c6 cf rjmp .-116 ; 0x3d2 <_ZN5Print7printlnEii.constprop.8+0x90>
446: 10 e0 ldi r17, 0x00 ; 0
448: 00 e0 ldi r16, 0x00 ; 0
44a: c3 cf rjmp .-122 ; 0x3d2 <_ZN5Print7printlnEii.constprop.8+0x90>
0000044c <__vector_16>:
#if defined(TIM0_OVF_vect)
ISR(TIM0_OVF_vect)
#else
ISR(TIMER0_OVF_vect)
#endif
{
44c: 1f 92 push r1
44e: 0f 92 push r0
450: 0f b6 in r0, 0x3f ; 63
452: 0f 92 push r0
454: 11 24 eor r1, r1
456: 2f 93 push r18
458: 3f 93 push r19
45a: 8f 93 push r24
45c: 9f 93 push r25
45e: af 93 push r26
460: bf 93 push r27
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
unsigned long m = timer0_millis;
462: 80 91 6f 01 lds r24, 0x016F ; 0x80016f <timer0_millis>
466: 90 91 70 01 lds r25, 0x0170 ; 0x800170 <timer0_millis+0x1>
46a: a0 91 71 01 lds r26, 0x0171 ; 0x800171 <timer0_millis+0x2>
46e: b0 91 72 01 lds r27, 0x0172 ; 0x800172 <timer0_millis+0x3>
unsigned char f = timer0_fract;
472: 30 91 6e 01 lds r19, 0x016E ; 0x80016e <timer0_fract>
m += MILLIS_INC;
f += FRACT_INC;
476: 23 e0 ldi r18, 0x03 ; 3
478: 23 0f add r18, r19
if (f >= FRACT_MAX) {
47a: 2d 37 cpi r18, 0x7D ; 125
47c: 58 f5 brcc .+86 ; 0x4d4 <__vector_16+0x88>
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
unsigned long m = timer0_millis;
unsigned char f = timer0_fract;
m += MILLIS_INC;
47e: 01 96 adiw r24, 0x01 ; 1
480: a1 1d adc r26, r1
482: b1 1d adc r27, r1
if (f >= FRACT_MAX) {
f -= FRACT_MAX;
m += 1;
}
timer0_fract = f;
484: 20 93 6e 01 sts 0x016E, r18 ; 0x80016e <timer0_fract>
timer0_millis = m;
488: 80 93 6f 01 sts 0x016F, r24 ; 0x80016f <timer0_millis>
48c: 90 93 70 01 sts 0x0170, r25 ; 0x800170 <timer0_millis+0x1>
490: a0 93 71 01 sts 0x0171, r26 ; 0x800171 <timer0_millis+0x2>
494: b0 93 72 01 sts 0x0172, r27 ; 0x800172 <timer0_millis+0x3>
timer0_overflow_count++;
498: 80 91 6a 01 lds r24, 0x016A ; 0x80016a <__data_end>
49c: 90 91 6b 01 lds r25, 0x016B ; 0x80016b <__data_end+0x1>
4a0: a0 91 6c 01 lds r26, 0x016C ; 0x80016c <__data_end+0x2>
4a4: b0 91 6d 01 lds r27, 0x016D ; 0x80016d <__data_end+0x3>
4a8: 01 96 adiw r24, 0x01 ; 1
4aa: a1 1d adc r26, r1
4ac: b1 1d adc r27, r1
4ae: 80 93 6a 01 sts 0x016A, r24 ; 0x80016a <__data_end>
4b2: 90 93 6b 01 sts 0x016B, r25 ; 0x80016b <__data_end+0x1>
4b6: a0 93 6c 01 sts 0x016C, r26 ; 0x80016c <__data_end+0x2>
4ba: b0 93 6d 01 sts 0x016D, r27 ; 0x80016d <__data_end+0x3>
}
4be: bf 91 pop r27
4c0: af 91 pop r26
4c2: 9f 91 pop r25
4c4: 8f 91 pop r24
4c6: 3f 91 pop r19
4c8: 2f 91 pop r18
4ca: 0f 90 pop r0
4cc: 0f be out 0x3f, r0 ; 63
4ce: 0f 90 pop r0
4d0: 1f 90 pop r1
4d2: 18 95 reti
unsigned char f = timer0_fract;
m += MILLIS_INC;
f += FRACT_INC;
if (f >= FRACT_MAX) {
f -= FRACT_MAX;
4d4: 26 e8 ldi r18, 0x86 ; 134
4d6: 23 0f add r18, r19
m += 1;
4d8: 02 96 adiw r24, 0x02 ; 2
4da: a1 1d adc r26, r1
4dc: b1 1d adc r27, r1
4de: d2 cf rjmp .-92 ; 0x484 <__vector_16+0x38>
000004e0 <__vector_19>:
#elif defined(USART_UDRE_vect)
ISR(USART_UDRE_vect)
#else
#error "Don't know what the Data Register Empty vector is called for Serial"
#endif
{
4e0: 1f 92 push r1
4e2: 0f 92 push r0
4e4: 0f b6 in r0, 0x3f ; 63
4e6: 0f 92 push r0
4e8: 11 24 eor r1, r1
4ea: 2f 93 push r18
4ec: 3f 93 push r19
4ee: 4f 93 push r20
4f0: 5f 93 push r21
4f2: 6f 93 push r22
4f4: 7f 93 push r23
4f6: 8f 93 push r24
4f8: 9f 93 push r25
4fa: af 93 push r26
4fc: bf 93 push r27
4fe: ef 93 push r30
500: ff 93 push r31
Serial._tx_udr_empty_irq();
502: 83 e7 ldi r24, 0x73 ; 115
504: 91 e0 ldi r25, 0x01 ; 1
506: 0e 94 05 01 call 0x20a ; 0x20a <_ZN14HardwareSerial17_tx_udr_empty_irqEv>
}
50a: ff 91 pop r31
50c: ef 91 pop r30
50e: bf 91 pop r27
510: af 91 pop r26
512: 9f 91 pop r25
514: 8f 91 pop r24
516: 7f 91 pop r23
518: 6f 91 pop r22
51a: 5f 91 pop r21
51c: 4f 91 pop r20
51e: 3f 91 pop r19
520: 2f 91 pop r18
522: 0f 90 pop r0
524: 0f be out 0x3f, r0 ; 63
526: 0f 90 pop r0
528: 1f 90 pop r1
52a: 18 95 reti
0000052c <__vector_18>:
#elif defined(USART_RXC_vect)
ISR(USART_RXC_vect) // ATmega8
#else
#error "Don't know what the Data Received vector is called for Serial"
#endif
{
52c: 1f 92 push r1
52e: 0f 92 push r0
530: 0f b6 in r0, 0x3f ; 63
532: 0f 92 push r0
534: 11 24 eor r1, r1
536: 2f 93 push r18
538: 8f 93 push r24
53a: 9f 93 push r25
53c: ef 93 push r30
53e: ff 93 push r31
// Actual interrupt handlers //////////////////////////////////////////////////////////////
void HardwareSerial::_rx_complete_irq(void)
{
if (bit_is_clear(*_ucsra, UPE0)) {
540: e0 91 83 01 lds r30, 0x0183 ; 0x800183 <Serial+0x10>
544: f0 91 84 01 lds r31, 0x0184 ; 0x800184 <Serial+0x11>
548: 80 81 ld r24, Z
54a: e0 91 89 01 lds r30, 0x0189 ; 0x800189 <Serial+0x16>
54e: f0 91 8a 01 lds r31, 0x018A ; 0x80018a <Serial+0x17>
552: 82 fd sbrc r24, 2
554: 1b c0 rjmp .+54 ; 0x58c <__vector_18+0x60>
// No Parity error, read byte and store it in the buffer if there is
// room
unsigned char c = *_udr;
556: 90 81 ld r25, Z
rx_buffer_index_t i = (unsigned int)(_rx_buffer_head + 1) % SERIAL_RX_BUFFER_SIZE;
558: 80 91 8c 01 lds r24, 0x018C ; 0x80018c <Serial+0x19>
55c: 8f 5f subi r24, 0xFF ; 255
55e: 8f 73 andi r24, 0x3F ; 63
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != _rx_buffer_tail) {
560: 20 91 8d 01 lds r18, 0x018D ; 0x80018d <Serial+0x1a>
564: 82 17 cp r24, r18
566: 41 f0 breq .+16 ; 0x578 <__vector_18+0x4c>
_rx_buffer[_rx_buffer_head] = c;
568: e0 91 8c 01 lds r30, 0x018C ; 0x80018c <Serial+0x19>
56c: f0 e0 ldi r31, 0x00 ; 0
56e: ed 58 subi r30, 0x8D ; 141
570: fe 4f sbci r31, 0xFE ; 254
572: 95 8f std Z+29, r25 ; 0x1d
_rx_buffer_head = i;
574: 80 93 8c 01 sts 0x018C, r24 ; 0x80018c <Serial+0x19>
Serial._rx_complete_irq();
}
578: ff 91 pop r31
57a: ef 91 pop r30
57c: 9f 91 pop r25
57e: 8f 91 pop r24
580: 2f 91 pop r18
582: 0f 90 pop r0
584: 0f be out 0x3f, r0 ; 63
586: 0f 90 pop r0
588: 1f 90 pop r1
58a: 18 95 reti
}
} else {
// Parity error, read byte but discard it
*_udr;
58c: 80 81 ld r24, Z
58e: f4 cf rjmp .-24 ; 0x578 <__vector_18+0x4c>
00000590 <main>:
void init()
{
// this needs to be called before setup() or some functions won't
// work there
sei();
590: 78 94 sei
// on the ATmega168, timer 0 is also used for fast hardware pwm
// (using phase-correct PWM would mean that timer 0 overflowed half as often
// resulting in different millis() behavior on the ATmega8 and ATmega168)
#if defined(TCCR0A) && defined(WGM01)
sbi(TCCR0A, WGM01);
592: 84 b5 in r24, 0x24 ; 36
594: 82 60 ori r24, 0x02 ; 2
596: 84 bd out 0x24, r24 ; 36
sbi(TCCR0A, WGM00);
598: 84 b5 in r24, 0x24 ; 36
59a: 81 60 ori r24, 0x01 ; 1
59c: 84 bd out 0x24, r24 ; 36
// this combination is for the standard atmega8
sbi(TCCR0, CS01);
sbi(TCCR0, CS00);
#elif defined(TCCR0B) && defined(CS01) && defined(CS00)
// this combination is for the standard 168/328/1280/2560
sbi(TCCR0B, CS01);
59e: 85 b5 in r24, 0x25 ; 37
5a0: 82 60 ori r24, 0x02 ; 2
5a2: 85 bd out 0x25, r24 ; 37
sbi(TCCR0B, CS00);
5a4: 85 b5 in r24, 0x25 ; 37
5a6: 81 60 ori r24, 0x01 ; 1
5a8: 85 bd out 0x25, r24 ; 37
// enable timer 0 overflow interrupt
#if defined(TIMSK) && defined(TOIE0)
sbi(TIMSK, TOIE0);
#elif defined(TIMSK0) && defined(TOIE0)
sbi(TIMSK0, TOIE0);
5aa: 80 91 6e 00 lds r24, 0x006E ; 0x80006e <__DATA_REGION_ORIGIN__+0xe>
5ae: 81 60 ori r24, 0x01 ; 1
5b0: 80 93 6e 00 sts 0x006E, r24 ; 0x80006e <__DATA_REGION_ORIGIN__+0xe>
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
#if defined(TCCR1B) && defined(CS11) && defined(CS10)
TCCR1B = 0;
5b4: 10 92 81 00 sts 0x0081, r1 ; 0x800081 <__DATA_REGION_ORIGIN__+0x21>
// set timer 1 prescale factor to 64
sbi(TCCR1B, CS11);
5b8: 80 91 81 00 lds r24, 0x0081 ; 0x800081 <__DATA_REGION_ORIGIN__+0x21>
5bc: 82 60 ori r24, 0x02 ; 2
5be: 80 93 81 00 sts 0x0081, r24 ; 0x800081 <__DATA_REGION_ORIGIN__+0x21>
#if F_CPU >= 8000000L
sbi(TCCR1B, CS10);
5c2: 80 91 81 00 lds r24, 0x0081 ; 0x800081 <__DATA_REGION_ORIGIN__+0x21>
5c6: 81 60 ori r24, 0x01 ; 1
5c8: 80 93 81 00 sts 0x0081, r24 ; 0x800081 <__DATA_REGION_ORIGIN__+0x21>
sbi(TCCR1, CS10);
#endif
#endif
// put timer 1 in 8-bit phase correct pwm mode
#if defined(TCCR1A) && defined(WGM10)
sbi(TCCR1A, WGM10);
5cc: 80 91 80 00 lds r24, 0x0080 ; 0x800080 <__DATA_REGION_ORIGIN__+0x20>
5d0: 81 60 ori r24, 0x01 ; 1
5d2: 80 93 80 00 sts 0x0080, r24 ; 0x800080 <__DATA_REGION_ORIGIN__+0x20>
// set timer 2 prescale factor to 64
#if defined(TCCR2) && defined(CS22)
sbi(TCCR2, CS22);
#elif defined(TCCR2B) && defined(CS22)
sbi(TCCR2B, CS22);
5d6: 80 91 b1 00 lds r24, 0x00B1 ; 0x8000b1 <__DATA_REGION_ORIGIN__+0x51>
5da: 84 60 ori r24, 0x04 ; 4
5dc: 80 93 b1 00 sts 0x00B1, r24 ; 0x8000b1 <__DATA_REGION_ORIGIN__+0x51>
// configure timer 2 for phase correct pwm (8-bit)
#if defined(TCCR2) && defined(WGM20)
sbi(TCCR2, WGM20);
#elif defined(TCCR2A) && defined(WGM20)
sbi(TCCR2A, WGM20);
5e0: 80 91 b0 00 lds r24, 0x00B0 ; 0x8000b0 <__DATA_REGION_ORIGIN__+0x50>
5e4: 81 60 ori r24, 0x01 ; 1
5e6: 80 93 b0 00 sts 0x00B0, r24 ; 0x8000b0 <__DATA_REGION_ORIGIN__+0x50>
#endif
#if defined(ADCSRA)
// set a2d prescaler so we are inside the desired 50-200 KHz range.
#if F_CPU >= 16000000 // 16 MHz / 128 = 125 KHz
sbi(ADCSRA, ADPS2);
5ea: 80 91 7a 00 lds r24, 0x007A ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
5ee: 84 60 ori r24, 0x04 ; 4
5f0: 80 93 7a 00 sts 0x007A, r24 ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
sbi(ADCSRA, ADPS1);
5f4: 80 91 7a 00 lds r24, 0x007A ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
5f8: 82 60 ori r24, 0x02 ; 2
5fa: 80 93 7a 00 sts 0x007A, r24 ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
sbi(ADCSRA, ADPS0);
5fe: 80 91 7a 00 lds r24, 0x007A ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
602: 81 60 ori r24, 0x01 ; 1
604: 80 93 7a 00 sts 0x007A, r24 ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
cbi(ADCSRA, ADPS2);
cbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
#endif
// enable a2d conversions
sbi(ADCSRA, ADEN);
608: 80 91 7a 00 lds r24, 0x007A ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
60c: 80 68 ori r24, 0x80 ; 128
60e: 80 93 7a 00 sts 0x007A, r24 ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
// here so they can be used as normal digital i/o; they will be
// reconnected in Serial.begin()
#if defined(UCSRB)
UCSRB = 0;
#elif defined(UCSR0B)
UCSR0B = 0;
612: 10 92 c1 00 sts 0x00C1, r1 ; 0x8000c1 <__DATA_REGION_ORIGIN__+0x61>
void HardwareSerial::begin(unsigned long baud, byte config)
{
// Try u2x mode first
uint16_t baud_setting = (F_CPU / 4 / baud - 1) / 2;
*_ucsra = 1 << U2X0;
616: e0 91 83 01 lds r30, 0x0183 ; 0x800183 <Serial+0x10>
61a: f0 91 84 01 lds r31, 0x0184 ; 0x800184 <Serial+0x11>
61e: 82 e0 ldi r24, 0x02 ; 2
620: 80 83 st Z, r24
*_ucsra = 0;
baud_setting = (F_CPU / 8 / baud - 1) / 2;
}
// assign the baud_setting, a.k.a. ubrr (USART Baud Rate Register)
*_ubrrh = baud_setting >> 8;
622: e0 91 7f 01 lds r30, 0x017F ; 0x80017f <Serial+0xc>
626: f0 91 80 01 lds r31, 0x0180 ; 0x800180 <Serial+0xd>
62a: 10 82 st Z, r1
*_ubrrl = baud_setting;
62c: e0 91 81 01 lds r30, 0x0181 ; 0x800181 <Serial+0xe>
630: f0 91 82 01 lds r31, 0x0182 ; 0x800182 <Serial+0xf>
634: 80 e1 ldi r24, 0x10 ; 16
636: 80 83 st Z, r24
_written = false;
638: 10 92 8b 01 sts 0x018B, r1 ; 0x80018b <Serial+0x18>
//set the data bits, parity, and stop bits
#if defined(__AVR_ATmega8__)
config |= 0x80; // select UCSRC register (shared with UBRRH)
#endif
*_ucsrc = config;
63c: e0 91 87 01 lds r30, 0x0187 ; 0x800187 <Serial+0x14>
640: f0 91 88 01 lds r31, 0x0188 ; 0x800188 <Serial+0x15>
644: 86 e0 ldi r24, 0x06 ; 6
646: 80 83 st Z, r24
sbi(*_ucsrb, RXEN0);
648: e0 91 85 01 lds r30, 0x0185 ; 0x800185 <Serial+0x12>
64c: f0 91 86 01 lds r31, 0x0186 ; 0x800186 <Serial+0x13>
650: 80 81 ld r24, Z
652: 80 61 ori r24, 0x10 ; 16
654: 80 83 st Z, r24
sbi(*_ucsrb, TXEN0);
656: e0 91 85 01 lds r30, 0x0185 ; 0x800185 <Serial+0x12>
65a: f0 91 86 01 lds r31, 0x0186 ; 0x800186 <Serial+0x13>
65e: 80 81 ld r24, Z
660: 88 60 ori r24, 0x08 ; 8
662: 80 83 st Z, r24
sbi(*_ucsrb, RXCIE0);
664: e0 91 85 01 lds r30, 0x0185 ; 0x800185 <Serial+0x12>
668: f0 91 86 01 lds r31, 0x0186 ; 0x800186 <Serial+0x13>
66c: 80 81 ld r24, Z
66e: 80 68 ori r24, 0x80 ; 128
670: 80 83 st Z, r24
cbi(*_ucsrb, UDRIE0);
672: e0 91 85 01 lds r30, 0x0185 ; 0x800185 <Serial+0x12>
676: f0 91 86 01 lds r31, 0x0186 ; 0x800186 <Serial+0x13>
67a: 80 81 ld r24, Z
67c: 8f 7d andi r24, 0xDF ; 223
67e: 80 83 st Z, r24
680: 85 e1 ldi r24, 0x15 ; 21
682: 91 e0 ldi r25, 0x01 ; 1
684: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
688: 82 e1 ldi r24, 0x12 ; 18
68a: 91 e0 ldi r25, 0x01 ; 1
68c: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
#include "wiring_private.h"
#include "pins_arduino.h"
void pinMode(uint8_t pin, uint8_t mode)
{
uint8_t bit = digitalPinToBitMask(pin);
690: 47 e9 ldi r20, 0x97 ; 151
692: 50 e0 ldi r21, 0x00 ; 0
694: fa 01 movw r30, r20
696: 64 91 lpm r22, Z
uint8_t port = digitalPinToPort(pin);
698: 83 e8 ldi r24, 0x83 ; 131
69a: 90 e0 ldi r25, 0x00 ; 0
69c: fc 01 movw r30, r24
69e: 24 91 lpm r18, Z
volatile uint8_t *reg, *out;
if (port == NOT_A_PIN) return;
6a0: 22 23 and r18, r18
6a2: 99 f0 breq .+38 ; 0x6ca <main+0x13a>
// JWS: can I let the optimizer do this?
reg = portModeRegister(port);
6a4: 30 e0 ldi r19, 0x00 ; 0
6a6: 22 0f add r18, r18
6a8: 33 1f adc r19, r19
6aa: f9 01 movw r30, r18
6ac: e8 59 subi r30, 0x98 ; 152
6ae: ff 4f sbci r31, 0xFF ; 255
6b0: a5 91 lpm r26, Z+
6b2: b4 91 lpm r27, Z
out = portOutputRegister(port);
6b4: f9 01 movw r30, r18
6b6: ee 58 subi r30, 0x8E ; 142
6b8: ff 4f sbci r31, 0xFF ; 255
6ba: 25 91 lpm r18, Z+
6bc: 34 91 lpm r19, Z
cli();
*reg &= ~bit;
*out |= bit;
SREG = oldSREG;
} else {
uint8_t oldSREG = SREG;
6be: 2f b7 in r18, 0x3f ; 63
cli();
6c0: f8 94 cli
*reg |= bit;
6c2: 3c 91 ld r19, X
6c4: 63 2b or r22, r19
6c6: 6c 93 st X, r22
SREG = oldSREG;
6c8: 2f bf out 0x3f, r18 ; 63
}
}
void digitalWrite(uint8_t pin, uint8_t val)
{
uint8_t timer = digitalPinToTimer(pin);
6ca: eb ea ldi r30, 0xAB ; 171
6cc: f0 e0 ldi r31, 0x00 ; 0
6ce: 24 91 lpm r18, Z
uint8_t bit = digitalPinToBitMask(pin);
6d0: fa 01 movw r30, r20
6d2: 44 91 lpm r20, Z
uint8_t port = digitalPinToPort(pin);
6d4: fc 01 movw r30, r24
6d6: 94 91 lpm r25, Z
volatile uint8_t *out;
if (port == NOT_A_PIN) return;
6d8: 99 23 and r25, r25
6da: e1 f0 breq .+56 ; 0x714 <main+0x184>
// If the pin that support PWM output, we need to turn it off
// before doing a digital write.
if (timer != NOT_ON_TIMER) turnOffPWM(timer);
6dc: 22 23 and r18, r18
6de: 59 f0 breq .+22 ; 0x6f6 <main+0x166>
//
//static inline void turnOffPWM(uint8_t timer) __attribute__ ((always_inline));
//static inline void turnOffPWM(uint8_t timer)
static void turnOffPWM(uint8_t timer)
{
switch (timer)
6e0: 23 30 cpi r18, 0x03 ; 3
6e2: 09 f4 brne .+2 ; 0x6e6 <main+0x156>
6e4: 5f c0 rjmp .+190 ; 0x7a4 <main+0x214>
6e6: 08 f0 brcs .+2 ; 0x6ea <main+0x15a>
6e8: 52 c0 rjmp .+164 ; 0x78e <main+0x1fe>
6ea: 21 30 cpi r18, 0x01 ; 1
6ec: 09 f4 brne .+2 ; 0x6f0 <main+0x160>
6ee: 60 c0 rjmp .+192 ; 0x7b0 <main+0x220>
6f0: 22 30 cpi r18, 0x02 ; 2
6f2: 09 f4 brne .+2 ; 0x6f6 <main+0x166>
6f4: 61 c0 rjmp .+194 ; 0x7b8 <main+0x228>
// If the pin that support PWM output, we need to turn it off
// before doing a digital write.
if (timer != NOT_ON_TIMER) turnOffPWM(timer);
out = portOutputRegister(port);
6f6: e9 2f mov r30, r25
6f8: f0 e0 ldi r31, 0x00 ; 0
6fa: ee 0f add r30, r30
6fc: ff 1f adc r31, r31
6fe: ee 58 subi r30, 0x8E ; 142
700: ff 4f sbci r31, 0xFF ; 255
702: a5 91 lpm r26, Z+
704: b4 91 lpm r27, Z
uint8_t oldSREG = SREG;
706: 8f b7 in r24, 0x3f ; 63
cli();
708: f8 94 cli
if (val == LOW) {
*out &= ~bit;
70a: 9c 91 ld r25, X
70c: 40 95 com r20
70e: 49 23 and r20, r25
710: 4c 93 st X, r20
} else {
*out |= bit;
}
SREG = oldSREG;
712: 8f bf out 0x3f, r24 ; 63
// to 0 (the default).
#if defined(ADMUX)
#if defined(__AVR_ATtiny25__) || defined(__AVR_ATtiny45__) || defined(__AVR_ATtiny85__)
ADMUX = (analog_reference << 4) | (pin & 0x07);
#else
ADMUX = (analog_reference << 6) | (pin & 0x07);
714: 80 e4 ldi r24, 0x40 ; 64
716: 80 93 7c 00 sts 0x007C, r24 ; 0x80007c <__DATA_REGION_ORIGIN__+0x1c>
// without a delay, we seem to read from the wrong channel
//delay(1);
#if defined(ADCSRA) && defined(ADC)
// start the conversion
sbi(ADCSRA, ADSC);
71a: 80 91 7a 00 lds r24, 0x007A ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
71e: 80 64 ori r24, 0x40 ; 64
720: 80 93 7a 00 sts 0x007A, r24 ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
// ADSC is cleared when the conversion finishes
while (bit_is_set(ADCSRA, ADSC));
724: 80 91 7a 00 lds r24, 0x007A ; 0x80007a <__DATA_REGION_ORIGIN__+0x1a>
728: 86 fd sbrc r24, 6
72a: fc cf rjmp .-8 ; 0x724 <main+0x194>
// ADC macro takes care of reading ADC register.
// avr-gcc implements the proper reading order: ADCL is read first.
return ADC;
72c: c0 91 78 00 lds r28, 0x0078 ; 0x800078 <__DATA_REGION_ORIGIN__+0x18>
730: d0 91 79 00 lds r29, 0x0079 ; 0x800079 <__DATA_REGION_ORIGIN__+0x19>
734: 89 e2 ldi r24, 0x29 ; 41
736: 91 e0 ldi r25, 0x01 ; 1
738: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
bool flag;
int xx = analogRead(A0);
Serial.print("reading "); Serial.println(xx);
73c: ce 01 movw r24, r28
73e: 0e 94 a1 01 call 0x342 ; 0x342 <_ZN5Print7printlnEii.constprop.8>
742: 82 e3 ldi r24, 0x32 ; 50
744: 91 e0 ldi r25, 0x01 ; 1
746: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
Serial.print("flag before "); Serial.println(flag);
74a: 90 e0 ldi r25, 0x00 ; 0
74c: 80 e0 ldi r24, 0x00 ; 0
74e: 0e 94 a1 01 call 0x342 ; 0x342 <_ZN5Print7printlnEii.constprop.8>
if (xx > 100) {
752: c5 36 cpi r28, 0x65 ; 101
754: d1 05 cpc r29, r1
756: 44 f0 brlt .+16 ; 0x768 <main+0x1d8>
758: 88 e4 ldi r24, 0x48 ; 72
75a: 91 e0 ldi r25, 0x01 ; 1
75c: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
760: 82 e1 ldi r24, 0x12 ; 18
762: 91 e0 ldi r25, 0x01 ; 1
764: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
768: 83 e5 ldi r24, 0x53 ; 83
76a: 91 e0 ldi r25, 0x01 ; 1
76c: 0e 94 94 01 call 0x328 ; 0x328 <_ZN5Print5writeEPKc.part.2.constprop.16>
Serial.println(" WTF"); // Serial.flush(); for (; ;);
flag = true;
}
Serial.print("flag after "); Serial.println(flag);
770: 81 e0 ldi r24, 0x01 ; 1
772: 90 e0 ldi r25, 0x00 ; 0
774: 0e 94 a1 01 call 0x342 ; 0x342 <_ZN5Print7printlnEii.constprop.8>
#endif
void serialEventRun(void)
{
#if defined(HAVE_HWSERIAL0)
if (Serial0_available && serialEvent && Serial0_available()) serialEvent();
778: c0 e0 ldi r28, 0x00 ; 0
77a: d0 e0 ldi r29, 0x00 ; 0
77c: 20 97 sbiw r28, 0x00 ; 0
77e: f1 f3 breq .-4 ; 0x77c <main+0x1ec>
780: 0e 94 f1 00 call 0x1e2 ; 0x1e2 <_Z17Serial0_availablev>
784: 88 23 and r24, r24
786: d1 f3 breq .-12 ; 0x77c <main+0x1ec>
788: 0e 94 00 00 call 0 ; 0x0 <__vectors>
78c: f7 cf rjmp .-18 ; 0x77c <main+0x1ec>
//
//static inline void turnOffPWM(uint8_t timer) __attribute__ ((always_inline));
//static inline void turnOffPWM(uint8_t timer)
static void turnOffPWM(uint8_t timer)
{
switch (timer)
78e: 27 30 cpi r18, 0x07 ; 7
790: b1 f0 breq .+44 ; 0x7be <main+0x22e>
792: 28 30 cpi r18, 0x08 ; 8
794: d1 f0 breq .+52 ; 0x7ca <main+0x23a>
796: 24 30 cpi r18, 0x04 ; 4
798: 09 f0 breq .+2 ; 0x79c <main+0x20c>
79a: ad cf rjmp .-166 ; 0x6f6 <main+0x166>
{
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A: cbi(TCCR1A, COM1A1); break;
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B: cbi(TCCR1A, COM1B1); break;
79c: 80 91 80 00 lds r24, 0x0080 ; 0x800080 <__DATA_REGION_ORIGIN__+0x20>
7a0: 8f 7d andi r24, 0xDF ; 223
7a2: 03 c0 rjmp .+6 ; 0x7aa <main+0x21a>
static void turnOffPWM(uint8_t timer)
{
switch (timer)
{
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A: cbi(TCCR1A, COM1A1); break;
7a4: 80 91 80 00 lds r24, 0x0080 ; 0x800080 <__DATA_REGION_ORIGIN__+0x20>
7a8: 8f 77 andi r24, 0x7F ; 127
#endif
#if defined(TCCR1A) && defined(COM1B1)
case TIMER1B: cbi(TCCR1A, COM1B1); break;
7aa: 80 93 80 00 sts 0x0080, r24 ; 0x800080 <__DATA_REGION_ORIGIN__+0x20>
7ae: a3 cf rjmp .-186 ; 0x6f6 <main+0x166>
#if defined(TCCR2) && defined(COM21)
case TIMER2: cbi(TCCR2, COM21); break;
#endif
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A: cbi(TCCR0A, COM0A1); break;
7b0: 84 b5 in r24, 0x24 ; 36
7b2: 8f 77 andi r24, 0x7F ; 127
#endif
#if defined(TCCR0A) && defined(COM0B1)
case TIMER0B: cbi(TCCR0A, COM0B1); break;
7b4: 84 bd out 0x24, r24 ; 36
7b6: 9f cf rjmp .-194 ; 0x6f6 <main+0x166>
7b8: 84 b5 in r24, 0x24 ; 36
7ba: 8f 7d andi r24, 0xDF ; 223
7bc: fb cf rjmp .-10 ; 0x7b4 <main+0x224>
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A: cbi(TCCR2A, COM2A1); break;
7be: 80 91 b0 00 lds r24, 0x00B0 ; 0x8000b0 <__DATA_REGION_ORIGIN__+0x50>
7c2: 8f 77 andi r24, 0x7F ; 127
#endif
#if defined(TCCR2A) && defined(COM2B1)
case TIMER2B: cbi(TCCR2A, COM2B1); break;
7c4: 80 93 b0 00 sts 0x00B0, r24 ; 0x8000b0 <__DATA_REGION_ORIGIN__+0x50>
7c8: 96 cf rjmp .-212 ; 0x6f6 <main+0x166>
7ca: 80 91 b0 00 lds r24, 0x00B0 ; 0x8000b0 <__DATA_REGION_ORIGIN__+0x50>
7ce: 8f 7d andi r24, 0xDF ; 223
7d0: f9 cf rjmp .-14 ; 0x7c4 <main+0x234>
000007d2 <_GLOBAL__sub_I___vector_18>:
size_t printNumber(unsigned long, uint8_t);
size_t printFloat(double, uint8_t);
protected:
void setWriteError(int err = 1) { write_error = err; }
public:
Print() : write_error(0) {}
7d2: e3 e7 ldi r30, 0x73 ; 115
7d4: f1 e0 ldi r31, 0x01 ; 1
7d6: 13 82 std Z+3, r1 ; 0x03
7d8: 12 82 std Z+2, r1 ; 0x02
public:
virtual int available() = 0;
virtual int read() = 0;
virtual int peek() = 0;
Stream() {_timeout=1000;}
7da: 88 ee ldi r24, 0xE8 ; 232
7dc: 93 e0 ldi r25, 0x03 ; 3
7de: a0 e0 ldi r26, 0x00 ; 0
7e0: b0 e0 ldi r27, 0x00 ; 0
7e2: 84 83 std Z+4, r24 ; 0x04
7e4: 95 83 std Z+5, r25 ; 0x05
7e6: a6 83 std Z+6, r26 ; 0x06
7e8: b7 83 std Z+7, r27 ; 0x07
volatile uint8_t *ucsrc, volatile uint8_t *udr) :
_ubrrh(ubrrh), _ubrrl(ubrrl),
_ucsra(ucsra), _ucsrb(ucsrb), _ucsrc(ucsrc),
_udr(udr),
_rx_buffer_head(0), _rx_buffer_tail(0),
_tx_buffer_head(0), _tx_buffer_tail(0)
7ea: 84 e0 ldi r24, 0x04 ; 4
7ec: 91 e0 ldi r25, 0x01 ; 1
7ee: 91 83 std Z+1, r25 ; 0x01
7f0: 80 83 st Z, r24
7f2: 85 ec ldi r24, 0xC5 ; 197
7f4: 90 e0 ldi r25, 0x00 ; 0
7f6: 95 87 std Z+13, r25 ; 0x0d
7f8: 84 87 std Z+12, r24 ; 0x0c
7fa: 84 ec ldi r24, 0xC4 ; 196
7fc: 90 e0 ldi r25, 0x00 ; 0
7fe: 97 87 std Z+15, r25 ; 0x0f
800: 86 87 std Z+14, r24 ; 0x0e
802: 80 ec ldi r24, 0xC0 ; 192
804: 90 e0 ldi r25, 0x00 ; 0
806: 91 8b std Z+17, r25 ; 0x11
808: 80 8b std Z+16, r24 ; 0x10
80a: 81 ec ldi r24, 0xC1 ; 193
80c: 90 e0 ldi r25, 0x00 ; 0
80e: 93 8b std Z+19, r25 ; 0x13
810: 82 8b std Z+18, r24 ; 0x12
812: 82 ec ldi r24, 0xC2 ; 194
814: 90 e0 ldi r25, 0x00 ; 0
816: 95 8b std Z+21, r25 ; 0x15
818: 84 8b std Z+20, r24 ; 0x14
81a: 86 ec ldi r24, 0xC6 ; 198
81c: 90 e0 ldi r25, 0x00 ; 0
81e: 97 8b std Z+23, r25 ; 0x17
820: 86 8b std Z+22, r24 ; 0x16
822: 11 8e std Z+25, r1 ; 0x19
824: 12 8e std Z+26, r1 ; 0x1a
826: 13 8e std Z+27, r1 ; 0x1b
828: 14 8e std Z+28, r1 ; 0x1c
// Function that can be weakly referenced by serialEventRun to prevent
// pulling in this file if it's not otherwise used.
bool Serial0_available() {
return Serial.available();
}
82a: 08 95 ret
0000082c <__udivmodsi4>:
82c: a1 e2 ldi r26, 0x21 ; 33
82e: 1a 2e mov r1, r26
830: aa 1b sub r26, r26
832: bb 1b sub r27, r27
834: fd 01 movw r30, r26
836: 0d c0 rjmp .+26 ; 0x852 <__udivmodsi4_ep>
00000838 <__udivmodsi4_loop>:
838: aa 1f adc r26, r26
83a: bb 1f adc r27, r27
83c: ee 1f adc r30, r30
83e: ff 1f adc r31, r31
840: a2 17 cp r26, r18
842: b3 07 cpc r27, r19
844: e4 07 cpc r30, r20
846: f5 07 cpc r31, r21
848: 20 f0 brcs .+8 ; 0x852 <__udivmodsi4_ep>
84a: a2 1b sub r26, r18
84c: b3 0b sbc r27, r19
84e: e4 0b sbc r30, r20
850: f5 0b sbc r31, r21
00000852 <__udivmodsi4_ep>:
852: 66 1f adc r22, r22
854: 77 1f adc r23, r23
856: 88 1f adc r24, r24
858: 99 1f adc r25, r25
85a: 1a 94 dec r1
85c: 69 f7 brne .-38 ; 0x838 <__udivmodsi4_loop>
85e: 60 95 com r22
860: 70 95 com r23
862: 80 95 com r24
864: 90 95 com r25
866: 9b 01 movw r18, r22
868: ac 01 movw r20, r24
86a: bd 01 movw r22, r26
86c: cf 01 movw r24, r30
86e: 08 95 ret
00000870 <__tablejump2__>:
870: ee 0f add r30, r30
872: ff 1f adc r31, r31
874: 05 90 lpm r0, Z+
876: f4 91 lpm r31, Z
878: e0 2d mov r30, r0
87a: 09 94 ijmp
0000087c <_exit>:
87c: f8 94 cli
0000087e <__stop_program>:
87e: ff cf rjmp .-2 ; 0x87e <__stop_program>