As a beginner to Arduino, I am trying to run this code but I get the errors below.
Could you please explain what I am missing?
I am using Arduino Uno R3 and IDE 2.3.3.
#include<Wire.h>
#include "RTClib.h"
RTC_DS1307 RTC;
void setup () {
Serial.begin(9600);
Wire.begin();
RTC.begin(); // load the time from your computer.
if (! RTC.isrunning()) {
Serial.println("RTC is NOT running!");// This will reflect the time that your sketch was compiled
RTC.adjust(DateTime(__DATE__, __TIME__));
}
}
void loop () {
DateTime now = RTC.now();
Serial.print(now.month(), DEC);
Serial.print('/');
Serial.print(now.day(), DEC);
Serial.print('/');
Serial.print(now.year(), DEC);
Serial.print(' ');
Serial.print(now.hour(), DEC);
Serial.print(':');
Serial.print(now.minute(), DEC);
Serial.print(':');
Serial.print(now.second(), DEC);
Serial.println();
delay(1000);
}
Errors:
C:\...\Temp\ccdPW47h.ltrans0.ltrans.o: In function begin': C:\...\Arduino\libraries\RTClib-2.1.4\src/RTC_DS1307.cpp:17: undefined reference to
Adafruit_I2CDevice::Adafruit_I2CDevice(unsigned char, TwoWire*)'
C:\...\Arduino\libraries\RTClib-2.1.4\src/RTC_DS1307.cpp:18: undefined reference to `Adafruit_I2CDevice::begin(bool)'
C:\...\Temp\ccdPW47h.ltrans0.ltrans.o: In function `read_register':
C:\...\Arduino\libraries\RTClib-2.1.4\src/RTClib.cpp:80: undefined reference to `Adafruit_I2CDevice::write(unsigned char const*, unsigned int, bool, unsigned char const*, unsigned int)'
C:\...\Arduino\libraries\RTClib-2.1.4\src/RTClib.cpp:81: undefined reference to `Adafruit_I2CDevice::read(unsigned char*, unsigned int, bool)'
C:\...\Temp\ccdPW47h.ltrans0.ltrans.o: In function adjust': C:\...\Arduino\libraries\RTClib-2.1.4\src/RTC_DS1307.cpp:46: undefined reference to
Adafruit_I2CDevice::write(unsigned char const*, unsigned int, bool, unsigned char const*, unsigned int)'
C:\...\Temp\ccdPW47h.ltrans0.ltrans.o: In function now': C:\...\Arduino\libraries\RTClib-2.1.4\src/RTC_DS1307.cpp:58: undefined reference to
Adafruit_I2CDevice::write_then_read(unsigned char const*, unsigned int, unsigned char*, unsigned int, bool)'
collect2.exe: error: ld returned 1 exit status
exit status 1
Compilation error: exit status 1
RTC_DS1307.cpp
#include "RTClib.h"
#define DS1307_ADDRESS 0x68 ///< I2C address for DS1307
#define DS1307_CONTROL 0x07 ///< Control register
#define DS1307_NVRAM 0x08 ///< Start of RAM registers - 56 bytes, 0x08 to 0x3f
/**************************************************************************/
/*!
@brief Start I2C for the DS1307 and test succesful connection
@param wireInstance pointer to the I2C bus
@return True if Wire can find DS1307 or false otherwise.
*/
/**************************************************************************/
bool RTC_DS1307::begin(TwoWire *wireInstance) {
if (i2c_dev)
delete i2c_dev;
i2c_dev = new Adafruit_I2CDevice(DS1307_ADDRESS, wireInstance);
if (!i2c_dev->begin())
return false;
return true;
}
/**************************************************************************/
/*!
@brief Is the DS1307 running? Check the Clock Halt bit in register 0
@return 1 if the RTC is running, 0 if not
*/
/**************************************************************************/
uint8_t RTC_DS1307::isrunning(void) { return !(read_register(0) >> 7); }
/**************************************************************************/
/*!
@brief Set the date and time in the DS1307
@param dt DateTime object containing the desired date/time
*/
/**************************************************************************/
void RTC_DS1307::adjust(const DateTime &dt) {
uint8_t buffer[8] = {0,
bin2bcd(dt.second()),
bin2bcd(dt.minute()),
bin2bcd(dt.hour()),
0,
bin2bcd(dt.day()),
bin2bcd(dt.month()),
bin2bcd(dt.year() - 2000U)};
i2c_dev->write(buffer, 8);
}
/**************************************************************************/
/*!
@brief Get the current date and time from the DS1307
@return DateTime object containing the current date and time
*/
/**************************************************************************/
DateTime RTC_DS1307::now() {
uint8_t buffer[7];
buffer[0] = 0;
i2c_dev->write_then_read(buffer, 1, buffer, 7);
return DateTime(bcd2bin(buffer[6]) + 2000U, bcd2bin(buffer[5]),
bcd2bin(buffer[4]), bcd2bin(buffer[2]), bcd2bin(buffer[1]),
bcd2bin(buffer[0] & 0x7F));
}
/**************************************************************************/
/*!
@brief Read the current mode of the SQW pin
@return Mode as Ds1307SqwPinMode enum
*/
/**************************************************************************/
Ds1307SqwPinMode RTC_DS1307::readSqwPinMode() {
return static_cast<Ds1307SqwPinMode>(read_register(DS1307_CONTROL) & 0x93);
}
/**************************************************************************/
/*!
@brief Change the SQW pin mode
@param mode The mode to use
*/
/**************************************************************************/
void RTC_DS1307::writeSqwPinMode(Ds1307SqwPinMode mode) {
write_register(DS1307_CONTROL, mode);
}
/**************************************************************************/
/*!
@brief Read data from the DS1307's NVRAM
@param buf Pointer to a buffer to store the data - make sure it's large
enough to hold size bytes
@param size Number of bytes to read
@param address Starting NVRAM address, from 0 to 55
*/
/**************************************************************************/
void RTC_DS1307::readnvram(uint8_t *buf, uint8_t size, uint8_t address) {
uint8_t addrByte = DS1307_NVRAM + address;
i2c_dev->write_then_read(&addrByte, 1, buf, size);
}
/**************************************************************************/
/*!
@brief Write data to the DS1307 NVRAM
@param address Starting NVRAM address, from 0 to 55
@param buf Pointer to buffer containing the data to write
@param size Number of bytes in buf to write to NVRAM
*/
/**************************************************************************/
void RTC_DS1307::writenvram(uint8_t address, const uint8_t *buf, uint8_t size) {
uint8_t addrByte = DS1307_NVRAM + address;
i2c_dev->write(buf, size, true, &addrByte, 1);
}
/**************************************************************************/
/*!
@brief Shortcut to read one byte from NVRAM
@param address NVRAM address, 0 to 55
@return The byte read from NVRAM
*/
/**************************************************************************/
uint8_t RTC_DS1307::readnvram(uint8_t address) {
uint8_t data;
readnvram(&data, 1, address);
return data;
}
/**************************************************************************/
/*!
@brief Shortcut to write one byte to NVRAM
@param address NVRAM address, 0 to 55
@param data One byte to write
*/
/**************************************************************************/
void RTC_DS1307::writenvram(uint8_t address, uint8_t data) {
writenvram(address, &data, 1);
}
RTClib.h
/**************************************************************************/
/*!
@file RTClib.h
Original library by JeeLabs http://news.jeelabs.org/code/, released to the
public domain
License: MIT (see LICENSE)
This is a fork of JeeLab's fantastic real time clock library for Arduino.
For details on using this library with an RTC module like the DS1307, PCF8523,
or DS3231, see the guide at:
https://learn.adafruit.com/ds1307-real-time-clock-breakout-board-kit/overview
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
*/
/**************************************************************************/
#ifndef _RTCLIB_H_
#define _RTCLIB_H_
#include <Adafruit_I2CDevice.h>
#include <Arduino.h>
class TimeSpan;
/** Constants */
#define SECONDS_PER_DAY 86400L ///< 60 * 60 * 24
#define SECONDS_FROM_1970_TO_2000 \
946684800 ///< Unixtime for 2000-01-01 00:00:00, useful for initialization
/** DS1307 SQW pin mode settings */
enum Ds1307SqwPinMode {
DS1307_OFF = 0x00, // Low
DS1307_ON = 0x80, // High
DS1307_SquareWave1HZ = 0x10, // 1Hz square wave
DS1307_SquareWave4kHz = 0x11, // 4kHz square wave
DS1307_SquareWave8kHz = 0x12, // 8kHz square wave
DS1307_SquareWave32kHz = 0x13 // 32kHz square wave
};
/** DS3231 SQW pin mode settings */
enum Ds3231SqwPinMode {
DS3231_OFF = 0x1C, /**< Off */
DS3231_SquareWave1Hz = 0x00, /**< 1Hz square wave */
DS3231_SquareWave1kHz = 0x08, /**< 1kHz square wave */
DS3231_SquareWave4kHz = 0x10, /**< 4kHz square wave */
DS3231_SquareWave8kHz = 0x18 /**< 8kHz square wave */
};
/** DS3231 Alarm modes for alarm 1 */
enum Ds3231Alarm1Mode {
DS3231_A1_PerSecond = 0x0F, /**< Alarm once per second */
DS3231_A1_Second = 0x0E, /**< Alarm when seconds match */
DS3231_A1_Minute = 0x0C, /**< Alarm when minutes and seconds match */
DS3231_A1_Hour = 0x08, /**< Alarm when hours, minutes
and seconds match */
DS3231_A1_Date = 0x00, /**< Alarm when date (day of month), hours,
minutes and seconds match */
DS3231_A1_Day = 0x10 /**< Alarm when day (day of week), hours,
minutes and seconds match */
};
/** DS3231 Alarm modes for alarm 2 */
enum Ds3231Alarm2Mode {
DS3231_A2_PerMinute = 0x7, /**< Alarm once per minute
(whenever seconds are 0) */
DS3231_A2_Minute = 0x6, /**< Alarm when minutes match */
DS3231_A2_Hour = 0x4, /**< Alarm when hours and minutes match */
DS3231_A2_Date = 0x0, /**< Alarm when date (day of month), hours
and minutes match */
DS3231_A2_Day = 0x8 /**< Alarm when day (day of week), hours
and minutes match */
};
/** PCF8523 INT/SQW pin mode settings */
enum Pcf8523SqwPinMode {
PCF8523_OFF = 7, /**< Off */
PCF8523_SquareWave1HZ = 6, /**< 1Hz square wave */
PCF8523_SquareWave32HZ = 5, /**< 32Hz square wave */
PCF8523_SquareWave1kHz = 4, /**< 1kHz square wave */
PCF8523_SquareWave4kHz = 3, /**< 4kHz square wave */
PCF8523_SquareWave8kHz = 2, /**< 8kHz square wave */
PCF8523_SquareWave16kHz = 1, /**< 16kHz square wave */
PCF8523_SquareWave32kHz = 0 /**< 32kHz square wave */
};
/** PCF8523 Timer Source Clock Frequencies for Timers A and B */
enum PCF8523TimerClockFreq {
PCF8523_Frequency4kHz = 0, /**< 1/4096th second = 244 microseconds,
max 62.256 milliseconds */
PCF8523_Frequency64Hz = 1, /**< 1/64th second = 15.625 milliseconds,
max 3.984375 seconds */
PCF8523_FrequencySecond = 2, /**< 1 second, max 255 seconds = 4.25 minutes */
PCF8523_FrequencyMinute = 3, /**< 1 minute, max 255 minutes = 4.25 hours */
PCF8523_FrequencyHour = 4, /**< 1 hour, max 255 hours = 10.625 days */
};
/** PCF8523 Timer Interrupt Low Pulse Width options for Timer B only */
enum PCF8523TimerIntPulse {
PCF8523_LowPulse3x64Hz = 0, /**< 46.875 ms 3/64ths second */
PCF8523_LowPulse4x64Hz = 1, /**< 62.500 ms 4/64ths second */
PCF8523_LowPulse5x64Hz = 2, /**< 78.125 ms 5/64ths second */
PCF8523_LowPulse6x64Hz = 3, /**< 93.750 ms 6/64ths second */
PCF8523_LowPulse8x64Hz = 4, /**< 125.000 ms 8/64ths second */
PCF8523_LowPulse10x64Hz = 5, /**< 156.250 ms 10/64ths second */
PCF8523_LowPulse12x64Hz = 6, /**< 187.500 ms 12/64ths second */
PCF8523_LowPulse14x64Hz = 7 /**< 218.750 ms 14/64ths second */
};
/** PCF8523 Offset modes for making temperature/aging/accuracy adjustments */
enum Pcf8523OffsetMode {
PCF8523_TwoHours = 0x00, /**< Offset made every two hours */
PCF8523_OneMinute = 0x80 /**< Offset made every minute */
};
/** PCF8563 CLKOUT pin mode settings */
enum Pcf8563SqwPinMode {
PCF8563_SquareWaveOFF = 0x00, /**< Off */
PCF8563_SquareWave1Hz = 0x83, /**< 1Hz square wave */
PCF8563_SquareWave32Hz = 0x82, /**< 32Hz square wave */
PCF8563_SquareWave1kHz = 0x81, /**< 1kHz square wave */
PCF8563_SquareWave32kHz = 0x80 /**< 32kHz square wave */
};
/**************************************************************************/
/*!
@brief Simple general-purpose date/time class (no TZ / DST / leap
seconds).
This class stores date and time information in a broken-down form, as a
tuple (year, month, day, hour, minute, second). The day of the week is
not stored, but computed on request. The class has no notion of time
zones, daylight saving time, or
[leap seconds](http://en.wikipedia.org/wiki/Leap_second): time is stored
in whatever time zone the user chooses to use.
The class supports dates in the range from 1 Jan 2000 to 31 Dec 2099
inclusive.
*/
/**************************************************************************/
class DateTime {
public:
DateTime(uint32_t t = SECONDS_FROM_1970_TO_2000);
DateTime(uint16_t year, uint8_t month, uint8_t day, uint8_t hour = 0,
uint8_t min = 0, uint8_t sec = 0);
DateTime(const DateTime ©);
DateTime(const char *date, const char *time);
DateTime(const __FlashStringHelper *date, const __FlashStringHelper *time);
DateTime(const char *iso8601date);
bool isValid() const;
char *toString(char *buffer) const;
/*!
@brief Return the year.
@return Year (range: 2000--2099).
*/
uint16_t year() const { return 2000U + yOff; }
/*!
@brief Return the month.
@return Month number (1--12).
*/
uint8_t month() const { return m; }
/*!
@brief Return the day of the month.
@return Day of the month (1--31).
*/
uint8_t day() const { return d; }
/*!
@brief Return the hour
@return Hour (0--23).
*/
uint8_t hour() const { return hh; }
uint8_t twelveHour() const;
/*!
@brief Return whether the time is PM.
@return 0 if the time is AM, 1 if it's PM.
*/
uint8_t isPM() const { return hh >= 12; }
/*!
@brief Return the minute.
@return Minute (0--59).
*/
uint8_t minute() const { return mm; }
/*!
@brief Return the second.
@return Second (0--59).
*/
uint8_t second() const { return ss; }
uint8_t dayOfTheWeek() const;
/* 32-bit times as seconds since 2000-01-01. */
uint32_t secondstime() const;
/* 32-bit times as seconds since 1970-01-01. */
uint32_t unixtime(void) const;
/*!
Format of the ISO 8601 timestamp generated by `timestamp()`. Each
option corresponds to a `toString()` format as follows:
*/
enum timestampOpt {
TIMESTAMP_FULL, //!< `YYYY-MM-DDThh:mm:ss`
TIMESTAMP_TIME, //!< `hh:mm:ss`
TIMESTAMP_DATE //!< `YYYY-MM-DD`
};
String timestamp(timestampOpt opt = TIMESTAMP_FULL) const;
DateTime operator+(const TimeSpan &span) const;
DateTime operator-(const TimeSpan &span) const;
TimeSpan operator-(const DateTime &right) const;
bool operator<(const DateTime &right) const;
/*!
@brief Test if one DateTime is greater (later) than another.
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right DateTime object to compare
@return True if the left DateTime is later than the right one,
false otherwise
*/
bool operator>(const DateTime &right) const { return right < *this; }
/*!
@brief Test if one DateTime is less (earlier) than or equal to another
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right DateTime object to compare
@return True if the left DateTime is earlier than or equal to the
right one, false otherwise
*/
bool operator<=(const DateTime &right) const { return !(*this > right); }
/*!
@brief Test if one DateTime is greater (later) than or equal to another
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right DateTime object to compare
@return True if the left DateTime is later than or equal to the right
one, false otherwise
*/
bool operator>=(const DateTime &right) const { return !(*this < right); }
bool operator==(const DateTime &right) const;
/*!
@brief Test if two DateTime objects are not equal.
@warning if one or both DateTime objects are invalid, returned value is
meaningless
@see use `isValid()` method to check if DateTime object is valid
@param right DateTime object to compare
@return True if the two objects are not equal, false if they are
*/
bool operator!=(const DateTime &right) const { return !(*this == right); }
protected:
uint8_t yOff; ///< Year offset from 2000
uint8_t m; ///< Month 1-12
uint8_t d; ///< Day 1-31
uint8_t hh; ///< Hours 0-23
uint8_t mm; ///< Minutes 0-59
uint8_t ss; ///< Seconds 0-59
};
/**************************************************************************/
/*!
@brief Timespan which can represent changes in time with seconds accuracy.
*/
/**************************************************************************/
class TimeSpan {
public:
TimeSpan(int32_t seconds = 0);
TimeSpan(int16_t days, int8_t hours, int8_t minutes, int8_t seconds);
TimeSpan(const TimeSpan ©);
/*!
@brief Number of days in the TimeSpan
e.g. 4
@return int16_t days
*/
int16_t days() const { return _seconds / 86400L; }
/*!
@brief Number of hours in the TimeSpan
This is not the total hours, it includes the days
e.g. 4 days, 3 hours - NOT 99 hours
@return int8_t hours
*/
int8_t hours() const { return _seconds / 3600 % 24; }
/*!
@brief Number of minutes in the TimeSpan
This is not the total minutes, it includes days/hours
e.g. 4 days, 3 hours, 27 minutes
@return int8_t minutes
*/
int8_t minutes() const { return _seconds / 60 % 60; }
/*!
@brief Number of seconds in the TimeSpan
This is not the total seconds, it includes the days/hours/minutes
e.g. 4 days, 3 hours, 27 minutes, 7 seconds
@return int8_t seconds
*/
int8_t seconds() const { return _seconds % 60; }
/*!
@brief Total number of seconds in the TimeSpan, e.g. 358027
@return int32_t seconds
*/
int32_t totalseconds() const { return _seconds; }
TimeSpan operator+(const TimeSpan &right) const;
TimeSpan operator-(const TimeSpan &right) const;
protected:
int32_t _seconds; ///< Actual TimeSpan value is stored as seconds
};
/**************************************************************************/
/*!
@brief A generic I2C RTC base class. DO NOT USE DIRECTLY
*/
/**************************************************************************/
class RTC_I2C {
protected:
/*!
@brief Convert a binary coded decimal value to binary. RTC stores
time/date values as BCD.
@param val BCD value
@return Binary value
*/
static uint8_t bcd2bin(uint8_t val) { return val - 6 * (val >> 4); }
/*!
@brief Convert a binary value to BCD format for the RTC registers
@param val Binary value
@return BCD value
*/
static uint8_t bin2bcd(uint8_t val) { return val + 6 * (val / 10); }
Adafruit_I2CDevice *i2c_dev = NULL; ///< Pointer to I2C bus interface
uint8_t read_register(uint8_t reg);
void write_register(uint8_t reg, uint8_t val);
};
/**************************************************************************/
/*!
@brief RTC based on the DS1307 chip connected via I2C and the Wire library
*/
/**************************************************************************/
class RTC_DS1307 : RTC_I2C {
public:
bool begin(TwoWire *wireInstance = &Wire);
void adjust(const DateTime &dt);
uint8_t isrunning(void);
DateTime now();
Ds1307SqwPinMode readSqwPinMode();
void writeSqwPinMode(Ds1307SqwPinMode mode);
uint8_t readnvram(uint8_t address);
void readnvram(uint8_t *buf, uint8_t size, uint8_t address);
void writenvram(uint8_t address, uint8_t data);
void writenvram(uint8_t address, const uint8_t *buf, uint8_t size);
};
/**************************************************************************/
/*!
@brief RTC based on the DS3231 chip connected via I2C and the Wire library
*/
/**************************************************************************/
class RTC_DS3231 : RTC_I2C {
public:
bool begin(TwoWire *wireInstance = &Wire);
void adjust(const DateTime &dt);
bool lostPower(void);
DateTime now();
Ds3231SqwPinMode readSqwPinMode();
void writeSqwPinMode(Ds3231SqwPinMode mode);
bool setAlarm1(const DateTime &dt, Ds3231Alarm1Mode alarm_mode);
bool setAlarm2(const DateTime &dt, Ds3231Alarm2Mode alarm_mode);
DateTime getAlarm1();
DateTime getAlarm2();
Ds3231Alarm1Mode getAlarm1Mode();
Ds3231Alarm2Mode getAlarm2Mode();
void disableAlarm(uint8_t alarm_num);
void clearAlarm(uint8_t alarm_num);
bool alarmFired(uint8_t alarm_num);
void enable32K(void);
void disable32K(void);
bool isEnabled32K(void);
float getTemperature(); // in Celsius degree
/*!
@brief Convert the day of the week to a representation suitable for
storing in the DS3231: from 1 (Monday) to 7 (Sunday).
@param d Day of the week as represented by the library:
from 0 (Sunday) to 6 (Saturday).
@return the converted value
*/
static uint8_t dowToDS3231(uint8_t d) { return d == 0 ? 7 : d; }
};
/**************************************************************************/
/*!
@brief RTC based on the PCF8523 chip connected via I2C and the Wire library
*/
/**************************************************************************/
class RTC_PCF8523 : RTC_I2C {
public:
bool begin(TwoWire *wireInstance = &Wire);
void adjust(const DateTime &dt);
bool lostPower(void);
bool initialized(void);
DateTime now();
void start(void);
void stop(void);
uint8_t isrunning();
Pcf8523SqwPinMode readSqwPinMode();
void writeSqwPinMode(Pcf8523SqwPinMode mode);
void enableSecondTimer(void);
void disableSecondTimer(void);
void enableCountdownTimer(PCF8523TimerClockFreq clkFreq, uint8_t numPeriods,
uint8_t lowPulseWidth);
void enableCountdownTimer(PCF8523TimerClockFreq clkFreq, uint8_t numPeriods);
void disableCountdownTimer(void);
void deconfigureAllTimers(void);
void calibrate(Pcf8523OffsetMode mode, int8_t offset);
};
/**************************************************************************/
/*!
@brief RTC based on the PCF8563 chip connected via I2C and the Wire library
*/
/**************************************************************************/
class RTC_PCF8563 : RTC_I2C {
public:
bool begin(TwoWire *wireInstance = &Wire);
bool lostPower(void);
void adjust(const DateTime &dt);
DateTime now();
void start(void);
void stop(void);
uint8_t isrunning();
Pcf8563SqwPinMode readSqwPinMode();
void writeSqwPinMode(Pcf8563SqwPinMode mode);
};
/**************************************************************************/
/*!
@brief RTC using the internal millis() clock, has to be initialized before
use. NOTE: this is immune to millis() rollover events.
*/
/**************************************************************************/
class RTC_Millis {
public:
/*!
@brief Start the RTC
@param dt DateTime object with the date/time to set
*/
void begin(const DateTime &dt) { adjust(dt); }
void adjust(const DateTime &dt);
DateTime now();
protected:
/*!
Unix time from the previous call to now().
This, together with `lastMillis`, defines the alignment between
the `millis()` timescale and the Unix timescale. Both variables
are updated on each call to now(), which prevents rollover issues.
*/
uint32_t lastUnix;
/*!
`millis()` value corresponding `lastUnix`.
Note that this is **not** the `millis()` value of the last call to
now(): it's the `millis()` value corresponding to the last **full
second** of Unix time preceding the last call to now().
*/
uint32_t lastMillis;
};
/**************************************************************************/
/*!
@brief RTC using the internal micros() clock, has to be initialized before
use. Unlike RTC_Millis, this can be tuned in order to compensate for
the natural drift of the system clock. Note that now() has to be
called more frequently than the micros() rollover period, which is
approximately 71.6 minutes.
*/
/**************************************************************************/
class RTC_Micros {
public:
/*!
@brief Start the RTC
@param dt DateTime object with the date/time to set
*/
void begin(const DateTime &dt) { adjust(dt); }
void adjust(const DateTime &dt);
void adjustDrift(int ppm);
DateTime now();
protected:
/*!
Number of microseconds reported by `micros()` per "true"
(calibrated) second.
*/
uint32_t microsPerSecond = 1000000;
/*!
Unix time from the previous call to now().
The timing logic is identical to RTC_Millis.
*/
uint32_t lastUnix;
/*!
`micros()` value corresponding to `lastUnix`.
*/
uint32_t lastMicros;
};
#endif // _RTCLIB_H_
Adafruit_I2CDevice.h
#ifndef Adafruit_I2CDevice_h
#define Adafruit_I2CDevice_h
#include <Arduino.h>
#include <Wire.h>
///< The class which defines how we will talk to this device over I2C
class Adafruit_I2CDevice {
public:
Adafruit_I2CDevice(uint8_t addr, TwoWire *theWire = &Wire);
uint8_t address(void);
bool begin(bool addr_detect = true);
void end(void);
bool detected(void);
bool read(uint8_t *buffer, size_t len, bool stop = true);
bool write(const uint8_t *buffer, size_t len, bool stop = true,
const uint8_t *prefix_buffer = nullptr, size_t prefix_len = 0);
bool write_then_read(const uint8_t *write_buffer, size_t write_len,
uint8_t *read_buffer, size_t read_len,
bool stop = false);
bool setSpeed(uint32_t desiredclk);
/*! @brief How many bytes we can read in a transaction
* @return The size of the Wire receive/transmit buffer */
size_t maxBufferSize() { return _maxBufferSize; }
private:
uint8_t _addr;
TwoWire *_wire;
bool _begun;
size_t _maxBufferSize;
bool _read(uint8_t *buffer, size_t len, bool stop);
};
#endif // Adafruit_I2CDevice_h