Set the time 6pm - 9pm working of my Light bulb and PIR sensor

i have a code but i dont know how to set the exact time

//the time we give the sensor to calibrate (10-60 secs according to the datasheet)
int calibrationTime = 30;

//the time when the sensor outputs a low impulse
long unsigned int lowIn;

//the amount of milliseconds the sensor has to be low
//before we assume all motion has stopped
long unsigned int pause = 5000;
unsigned long minutes = 10000;

boolean lockLow = true;
boolean takeLowTime;

int pirPin = 5; //the digital pin connected to the PIR sensor’s output
int ledPin = 13;
int BluepirPin = 4;
int BlueledPin = 12;
int GreenpirPin = 3;
int GreenledPin = 11;
int RedpirPin = 2;
int RedledPin = 10;

/////////////////////////////
//SETUP
void setup(){
Serial.begin(9600);
pinMode(pirPin, INPUT);
pinMode(ledPin, OUTPUT);
pinMode(BluepirPin, INPUT);
pinMode(BlueledPin, OUTPUT);
pinMode(GreenpirPin, INPUT);
pinMode(GreenledPin, OUTPUT);
pinMode(RedpirPin, INPUT);
pinMode(RedledPin, OUTPUT);
digitalWrite(pirPin, LOW);
digitalWrite(BluepirPin, LOW);
digitalWrite(GreenpirPin, LOW);
digitalWrite(RedpirPin, LOW);

//give the sensor some time to calibrate
Serial.print(“calibrating sensor “);
for(int i = 0; i < calibrationTime; i++){
Serial.print(”.”);
delay(1000);
}
Serial.println(" done");
Serial.println(“SENSOR ACTIVE”);
delay(50);
}

void pir(){

if(digitalRead(pirPin) == HIGH){
digitalWrite(ledPin, HIGH); //the led visualizes the sensors output pin state
if(lockLow){
//makes sure we wait for a transition to LOW before any further output is made:
lockLow = false;
Serial.println("—");
Serial.print(“motion detected at “);
Serial.print(millis()/1000);
Serial.println(” sec”);
delay(50);
}
takeLowTime = true;
}

if(digitalRead(pirPin) == LOW){
digitalWrite(ledPin, LOW); //the led visualizes the sensors output pin state

if(takeLowTime){
lowIn = millis(); //save the time of the transition from high to LOW
takeLowTime = false; //make sure this is only done at the start of a LOW phase
}
//if the sensor is low for more than the given pause,
//we assume that no more motion is going to happen
if(!lockLow && millis() - lowIn > pause){
//makes sure this block of code is only executed again after
//a new motion sequence has been detected
lockLow = true;
Serial.print(“motion ended at “); //output
Serial.print((millis() - pause)/1000);
Serial.println(” sec”);
delay(50);
}
}
}

void subBlue () {

if(digitalRead(BluepirPin) == HIGH){
digitalWrite(BlueledPin, HIGH); //the led visualizes the sensors output pin state
if(lockLow){
//makes sure we wait for a transition to LOW before any further output is made:
lockLow = false;
Serial.println("—");
Serial.print(“motion detected at “);
Serial.print(millis()/1000);
Serial.println(” sec”);
delay(50);
}
takeLowTime = true;
}

if(digitalRead(BluepirPin) == LOW){
digitalWrite(BlueledPin, LOW); //the led visualizes the sensors output pin state

if(takeLowTime){
lowIn = millis(); //save the time of the transition from high to LOW
takeLowTime = false; //make sure this is only done at the start of a LOW phase
}
//if the sensor is low for more than the given pause,
//we assume that no more motion is going to happen
if(!lockLow && millis() - lowIn > pause){
//makes sure this block of code is only executed again after
//a new motion sequence has been detected
lockLow = true;
Serial.print(“motion ended at “); //output
Serial.print((millis() - pause)/1000);
Serial.println(” sec”);
delay(50);
}
}

}

void subGreen(){

if(digitalRead(GreenpirPin) == HIGH){
digitalWrite(GreenledPin, HIGH); //the led visualizes the sensors output pin state
if(lockLow){
//makes sure we wait for a transition to LOW before any further output is made:
lockLow = false;
Serial.println("—");
Serial.print(“motion detected at “);
Serial.print(millis()/1000);
Serial.println(” sec”);
delay(50);
}
takeLowTime = true;
}

if(digitalRead(GreenpirPin) == LOW){
digitalWrite(GreenledPin, LOW); //the led visualizes the sensors output pin state

if(takeLowTime){
lowIn = millis(); //save the time of the transition from high to LOW
takeLowTime = false; //make sure this is only done at the start of a LOW phase
}
//if the sensor is low for more than the given pause,
//we assume that no more motion is going to happen
if(!lockLow && millis() - lowIn > pause){
//makes sure this block of code is only executed again after
//a new motion sequence has been detected
lockLow = true;
Serial.print(“motion ended at “); //output
Serial.print((millis() - pause)/1000);
Serial.println(” sec”);
delay(50);
}
}
}

////////////////////////////
//LOOP
void loop(){
pir();
subBlue();
subGreen();

if(digitalRead(RedpirPin) == HIGH){
digitalWrite(RedledPin, HIGH); //the led visualizes the sensors output pin state
if(lockLow){
//makes sure we wait for a transition to LOW before any further output is made:
lockLow = false;
Serial.println("—");
Serial.print(“motion detected at “);
Serial.print(millis()/1000);
Serial.println(” sec”);
delay(50);
}
takeLowTime = true;
}

if(digitalRead(RedpirPin) == LOW){
digitalWrite(RedledPin, LOW); //the led visualizes the sensors output pin state

if(takeLowTime){
lowIn = millis(); //save the time of the transition from high to LOW
takeLowTime = false; //make sure this is only done at the start of a LOW phase
}
//if the sensor is low for more than the given pause,
//we assume that no more motion is going to happen
if(!lockLow && millis() - lowIn > pause){
//makes sure this block of code is only executed again after
//a new motion sequence has been detected
lockLow = true;
Serial.print(“motion ended at “); //output
Serial.print((millis() - pause)/1000);
Serial.println(” sec”);
delay(50);

}
}

}

Please first read the sticky (as posted on top of every forum) so you know how to post the code, and what other info we need. Without that, we can't offer suggestions. Help us help you.