ESp32 and ST7789P3 2.25" 76x284 TFT (from Estardyn)

Hey everybody

I purchased this screen https://fr.aliexpress.com/item/1005008937314193.html and i was not able to make it work with tft_eSpi

I share here a solution i found after struggling so many hours…..

I found intersting data here https://www.buydisplay.com/spi-tft-2-25-lcd-76x284-display-module-st7789-breakout-board-for-arduino-raspberry-pi and downloaded the zip file for esp32 wich contains example with another librairy (ERGFX)

For my ESP32, here are the pins:
#define TFT_RST 16
#define TFT_DC 17
#define TFT_CS 5
#define TFT_CLK 18
#define TFT_MOSI 23
And please note also that BL pin of the screen is connected to GND on esp32….
Vcc on 3.3V and Gnd to Gnd

On platform.io, i have :
project/

├─ lib/ER_TFT/
│ ├─ ERGFX.h
│ ├─ ERGFX.cpp
│ ├─ glcdfont.c
│ ├─ TFTM2.25-1.h
│ └─ TFTM2.25-1.cpp

├─ src/
│ └─ main.cpp

└─ platformio.ini

Content of platform.io is :
[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino
monitor_speed = 115200

And main.cpp is

#include <Arduino.h>
#include "TFTM2.25-1.h"

// Définition des pins
#define TFT_RST   16
#define TFT_DC    17
#define TFT_CS    5
#define TFT_CLK   18
#define TFT_MOSI  23


// SPI matériel plus rapide :
ST7789 tft(TFT_CS, TFT_DC, TFT_RST);

void setup() {
Serial.begin(115200);
tft.begin();

// Fond noir
tft.fillScreen(ST7789_BLACK);

// Texte
tft.setTextColor(ST7789_WHITE);
tft.setTextSize(2);
tft.setCursor(5, 5);
tft.println("ESP32 + ST7789 OK");

// Test rectangles
tft.fillRect(10, 50, 50, 100, ST7789_RED);
tft.fillRect(30, 80, 40, 60, ST7789_GREEN);
}

void loop() {
// Clignotement d'un pixel
static bool state = false;
state = !state;
tft.drawPixel(60, 200, state ? ST7789_BLUE : ST7789_YELLOW);
delay(500);
}

I hope this could help ohter people :slight_smile:

Finally i succeeded using the TFT-eSpi library with an Esp32 :star_struck:

I share here my files :

Complete User_Setup.h


//                            USER DEFINED SETTINGS

//   Set driver type, fonts to be loaded, pins used and SPI control method etc.

//

//   See the User_Setup_Select.h file if you wish to be able to define multiple

//   setups and then easily select which setup file is used by the compiler.

//

//   If this file is edited correctly then all the library example sketches should

//   run without the need to make any more changes for a particular hardware setup!

//   Note that some sketches are designed for a particular TFT pixel width/height




// User defined information reported by "Read_User_Setup" test & diagnostics example

#define USER_SETUP_INFO "User_Setup"




// Define to disable all #warnings in library (can be put in User_Setup_Select.h)

//#define DISABLE_ALL_LIBRARY_WARNINGS




// ##################################################################################

//

// Section 1. Call up the right driver file and any options for it

//

// ##################################################################################




// Define STM32 to invoke optimised processor support (only for STM32)

//#define STM32




// Defining the STM32 board allows the library to optimise the performance

// for UNO compatible "MCUfriend" style shields

//#define NUCLEO_64_TFT

//#define NUCLEO_144_TFT




// STM32 8-bit parallel only:

// If STN32 Port A or B pins 0-7 are used for 8-bit parallel data bus bits 0-7

// then this will improve rendering performance by a factor of ~8x

//#define STM_PORTA_DATA_BUS

//#define STM_PORTB_DATA_BUS




// Tell the library to use parallel mode (otherwise SPI is assumed)

//#define TFT_PARALLEL_8_BIT

//#defined TFT_PARALLEL_16_BIT // **** 16-bit parallel ONLY for RP2040 processor ****




// Display type -  only define if RPi display

//#define RPI_DISPLAY_TYPE // 20MHz maximum SPI




// Only define one driver, the other ones must be commented out

//#define ILI9341_DRIVER       // Generic driver for common displays

//#define ILI9341_2_DRIVER     // Alternative ILI9341 driver, see https://github.com/Bodmer/TFT_eSPI/issues/1172

//#define ST7735_DRIVER      // Define additional parameters below for this display

//#define ILI9163_DRIVER     // Define additional parameters below for this display

//#define S6D02A1_DRIVER

//#define RPI_ILI9486_DRIVER // 20MHz maximum SPI

//#define HX8357D_DRIVER

//#define ILI9481_DRIVER

//#define ILI9486_DRIVER

//#define ILI9488_DRIVER     // WARNING: Do not connect ILI9488 display SDO to MISO if other devices share the SPI bus (TFT SDO does NOT tristate when CS is high)

#define ST7789_DRIVER      // Full configuration option, define additional parameters below for this display

//#define ST7789_2_DRIVER    // Minimal configuration option, define additional parameters below for this display

//#define R61581_DRIVER

//#define RM68140_DRIVER

//#define ST7796_DRIVER

//#define SSD1351_DRIVER

//#define SSD1963_480_DRIVER

//#define SSD1963_800_DRIVER

//#define SSD1963_800ALT_DRIVER

//#define ILI9225_DRIVER

//#define GC9A01_DRIVER




// Some displays support SPI reads via the MISO pin, other displays have a single

// bi-directional SDA pin and the library will try to read this via the MOSI line.

// To use the SDA line for reading data from the TFT uncomment the following line:




// #define TFT_SDA_READ      // This option is for ESP32 ONLY, tested with ST7789 and GC9A01 display only




// For ST7735, ST7789 and ILI9341 ONLY, define the colour order IF the blue and red are swapped on your display

// Try ONE option at a time to find the correct colour order for your display




//  #define TFT_RGB_ORDER TFT_RGB  // Colour order Red-Green-Blue

  #define TFT_RGB_ORDER TFT_BGR  // Colour order Blue-Green-Red




// For M5Stack ESP32 module with integrated ILI9341 display ONLY, remove // in line below




// #define M5STACK




// For ST7789, ST7735, ILI9163 and GC9A01 ONLY, define the pixel width and height in portrait orientation

// #define TFT_WIDTH  80

// #define TFT_WIDTH  128

// #define TFT_WIDTH  172 // ST7789 172 x 320

// #define TFT_WIDTH  170 // ST7789 170 x 320

// #define TFT_WIDTH  240 // ST7789 240 x 240 and 240 x 320

// #define TFT_HEIGHT 160

// #define TFT_HEIGHT 128

// #define TFT_HEIGHT 240 // ST7789 240 x 240

// #define TFT_HEIGHT 320 // ST7789 240 x 320

// #define TFT_HEIGHT 240 // GC9A01 240 x 240




#define TFT_WIDTH  76

#define TFT_HEIGHT 284

#define CGRAM_OFFSET




// For ST7735 ONLY, define the type of display, originally this was based on the

// colour of the tab on the screen protector film but this is not always true, so try

// out the different options below if the screen does not display graphics correctly,

// e.g. colours wrong, mirror images, or stray pixels at the edges.

// Comment out ALL BUT ONE of these options for a ST7735 display driver, save this

// this User_Setup file, then rebuild and upload the sketch to the board again:




// #define ST7735_INITB

// #define ST7735_GREENTAB

// #define ST7735_GREENTAB2

// #define ST7735_GREENTAB3

// #define ST7735_GREENTAB128    // For 128 x 128 display

// #define ST7735_GREENTAB160x80 // For 160 x 80 display (BGR, inverted, 26 offset)

// #define ST7735_ROBOTLCD       // For some RobotLCD Arduino shields (128x160, BGR, https://docs.arduino.cc/retired/getting-started-guides/TFT)

// #define ST7735_REDTAB

// #define ST7735_BLACKTAB

// #define ST7735_REDTAB160x80   // For 160 x 80 display with 24 pixel offset




// If colours are inverted (white shows as black) then uncomment one of the next

// 2 lines try both options, one of the options should correct the inversion.




// #define TFT_INVERSION_ON

 #define TFT_INVERSION_OFF





// ##################################################################################

//

// Section 2. Define the pins that are used to interface with the display here

//

// ##################################################################################




// If a backlight control signal is available then define the TFT_BL pin in Section 2

// below. The backlight will be turned ON when tft.begin() is called, but the library

// needs to know if the LEDs are ON with the pin HIGH or LOW. If the LEDs are to be

// driven with a PWM signal or turned OFF/ON then this must be handled by the user

// sketch. e.g. with digitalWrite(TFT_BL, LOW);




// #define TFT_BL   32            // LED back-light control pin

// #define TFT_BACKLIGHT_ON HIGH  // Level to turn ON back-light (HIGH or LOW)






// We must use hardware SPI, a minimum of 3 GPIO pins is needed.

// Typical setup for ESP8266 NodeMCU ESP-12 is :

//

// Display SDO/MISO  to NodeMCU pin D6 (or leave disconnected if not reading TFT)

// Display LED       to NodeMCU pin VIN (or 5V, see below)

// Display SCK       to NodeMCU pin D5

// Display SDI/MOSI  to NodeMCU pin D7

// Display DC (RS/AO)to NodeMCU pin D3

// Display RESET     to NodeMCU pin D4 (or RST, see below)

// Display CS        to NodeMCU pin D8 (or GND, see below)

// Display GND       to NodeMCU pin GND (0V)

// Display VCC       to NodeMCU 5V or 3.3V

//

// The TFT RESET pin can be connected to the NodeMCU RST pin or 3.3V to free up a control pin

//

// The DC (Data Command) pin may be labelled AO or RS (Register Select)

//

// With some displays such as the ILI9341 the TFT CS pin can be connected to GND if no more

// SPI devices (e.g. an SD Card) are connected, in this case comment out the #define TFT_CS

// line below so it is NOT defined. Other displays such at the ST7735 require the TFT CS pin

// to be toggled during setup, so in these cases the TFT_CS line must be defined and connected.

//

// The NodeMCU D0 pin can be used for RST

//

//

// Note: only some versions of the NodeMCU provide the USB 5V on the VIN pin

// If 5V is not available at a pin you can use 3.3V but backlight brightness

// will be lower.





// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP8266 SETUP ######




// For NodeMCU - use pin numbers in the form PIN_Dx where Dx is the NodeMCU pin designation

//#define TFT_MISO  PIN_D6  // Automatically assigned with ESP8266 if not defined

//#define TFT_MOSI  PIN_D7  // Automatically assigned with ESP8266 if not defined

//#define TFT_SCLK  PIN_D5  // Automatically assigned with ESP8266 if not defined




//#define TFT_CS    PIN_D8  // Chip select control pin D8

//#define TFT_DC    PIN_D3  // Data Command control pin

//#define TFT_RST   PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)

//#define TFT_RST  -1     // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V





//#define TFT_BL PIN_D1  // LED back-light (only for ST7789 with backlight control pin)




//#define TOUCH_CS PIN_D2     // Chip select pin (T_CS) of touch screen




//#define TFT_WR PIN_D2       // Write strobe for modified Raspberry Pi TFT only




#define TFT_MOSI  23

#define TFT_SCLK  18

#define TFT_CS    5

#define TFT_DC    17

#define TFT_RST   16





// ######  FOR ESP8266 OVERLAP MODE EDIT THE PIN NUMBERS IN THE FOLLOWING LINES  ######




// Overlap mode shares the ESP8266 FLASH SPI bus with the TFT so has a performance impact

// but saves pins for other functions. It is best not to connect MISO as some displays

// do not tristate that line when chip select is high!

// Note: Only one SPI device can share the FLASH SPI lines, so a SPI touch controller

// cannot be connected as well to the same SPI signals.

// On NodeMCU 1.0 SD0=MISO, SD1=MOSI, CLK=SCLK to connect to TFT in overlap mode

// On NodeMCU V3  S0 =MISO, S1 =MOSI, S2 =SCLK

// In ESP8266 overlap mode the following must be defined




//#define TFT_SPI_OVERLAP




// In ESP8266 overlap mode the TFT chip select MUST connect to pin D3

//#define TFT_CS   PIN_D3

//#define TFT_DC   PIN_D5  // Data Command control pin

//#define TFT_RST  PIN_D4  // Reset pin (could connect to NodeMCU RST, see next line)

//#define TFT_RST  -1  // Set TFT_RST to -1 if the display RESET is connected to NodeMCU RST or 3.3V





// ###### EDIT THE PIN NUMBERS IN THE LINES FOLLOWING TO SUIT YOUR ESP32 SETUP   ######




// For ESP32 Dev board (only tested with ILI9341 display)

// The hardware SPI can be mapped to any pins




//#define TFT_MISO 19

//#define TFT_MOSI 23

//#define TFT_SCLK 18

//#define TFT_CS   15  // Chip select control pin

//#define TFT_DC    2  // Data Command control pin

//#define TFT_RST   4  // Reset pin (could connect to RST pin)

//#define TFT_RST  -1  // Set TFT_RST to -1 if display RESET is connected to ESP32 board RST




// For ESP32 Dev board (only tested with GC9A01 display)

// The hardware SPI can be mapped to any pins




//#define TFT_MOSI 15 // In some display driver board, it might be written as "SDA" and so on.

//#define TFT_SCLK 14

//#define TFT_CS   5  // Chip select control pin

//#define TFT_DC   27  // Data Command control pin

//#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)

//#define TFT_BL   22  // LED back-light




//#define TOUCH_CS 21     // Chip select pin (T_CS) of touch screen




//#define TFT_WR 22    // Write strobe for modified Raspberry Pi TFT only




// For the M5Stack module use these #define lines

//#define TFT_MISO 19

//#define TFT_MOSI 23

//#define TFT_SCLK 18

//#define TFT_CS   14  // Chip select control pin

//#define TFT_DC   27  // Data Command control pin

//#define TFT_RST  33  // Reset pin (could connect to Arduino RESET pin)

//#define TFT_BL   32  // LED back-light (required for M5Stack)




// ######       EDIT THE PINs BELOW TO SUIT YOUR ESP32 PARALLEL TFT SETUP        ######




// The library supports 8-bit parallel TFTs with the ESP32, the pin

// selection below is compatible with ESP32 boards in UNO format.

// Wemos D32 boards need to be modified, see diagram in Tools folder.

// Only ILI9481 and ILI9341 based displays have been tested!




// Parallel bus is only supported for the STM32 and ESP32

// Example below is for ESP32 Parallel interface with UNO displays




// Tell the library to use 8-bit parallel mode (otherwise SPI is assumed)

//#define TFT_PARALLEL_8_BIT




// The ESP32 and TFT the pins used for testing are:

//#define TFT_CS   33  // Chip select control pin (library pulls permanently low

//#define TFT_DC   15  // Data Command control pin - must use a pin in the range 0-31

//#define TFT_RST  32  // Reset pin, toggles on startup




//#define TFT_WR    4  // Write strobe control pin - must use a pin in the range 0-31

//#define TFT_RD    2  // Read strobe control pin




//#define TFT_D0   12  // Must use pins in the range 0-31 for the data bus

//#define TFT_D1   13  // so a single register write sets/clears all bits.

//#define TFT_D2   26  // Pins can be randomly assigned, this does not affect

//#define TFT_D3   25  // TFT screen update performance.

//#define TFT_D4   17

//#define TFT_D5   16

//#define TFT_D6   27

//#define TFT_D7   14




// ######       EDIT THE PINs BELOW TO SUIT YOUR STM32 SPI TFT SETUP        ######




// The TFT can be connected to SPI port 1 or 2

//#define TFT_SPI_PORT 1 // SPI port 1 maximum clock rate is 55MHz

//#define TFT_MOSI PA7

//#define TFT_MISO PA6

//#define TFT_SCLK PA5




//#define TFT_SPI_PORT 2 // SPI port 2 maximum clock rate is 27MHz

//#define TFT_MOSI PB15

//#define TFT_MISO PB14

//#define TFT_SCLK PB13




// Can use Ardiuno pin references, arbitrary allocation, TFT_eSPI controls chip select

//#define TFT_CS   D5 // Chip select control pin to TFT CS

//#define TFT_DC   D6 // Data Command control pin to TFT DC (may be labelled RS = Register Select)

//#define TFT_RST  D7 // Reset pin to TFT RST (or RESET)

// OR alternatively, we can use STM32 port reference names PXnn

//#define TFT_CS   PE11 // Nucleo-F767ZI equivalent of D5

//#define TFT_DC   PE9  // Nucleo-F767ZI equivalent of D6

//#define TFT_RST  PF13 // Nucleo-F767ZI equivalent of D7




//#define TFT_RST  -1   // Set TFT_RST to -1 if the display RESET is connected to processor reset

                        // Use an Arduino pin for initial testing as connecting to processor reset

                        // may not work (pulse too short at power up?)




// ##################################################################################

//

// Section 3. Define the fonts that are to be used here

//

// ##################################################################################




// Comment out the #defines below with // to stop that font being loaded

// The ESP8366 and ESP32 have plenty of memory so commenting out fonts is not

// normally necessary. If all fonts are loaded the extra FLASH space required is

// about 17Kbytes. To save FLASH space only enable the fonts you need!




#define LOAD_GLCD   // Font 1. Original Adafruit 8 pixel font needs ~1820 bytes in FLASH

#define LOAD_FONT2  // Font 2. Small 16 pixel high font, needs ~3534 bytes in FLASH, 96 characters

#define LOAD_FONT4  // Font 4. Medium 26 pixel high font, needs ~5848 bytes in FLASH, 96 characters

#define LOAD_FONT6  // Font 6. Large 48 pixel font, needs ~2666 bytes in FLASH, only characters 1234567890:-.apm

#define LOAD_FONT7  // Font 7. 7 segment 48 pixel font, needs ~2438 bytes in FLASH, only characters 1234567890:-.

#define LOAD_FONT8  // Font 8. Large 75 pixel font needs ~3256 bytes in FLASH, only characters 1234567890:-.

//#define LOAD_FONT8N // Font 8. Alternative to Font 8 above, slightly narrower, so 3 digits fit a 160 pixel TFT

#define LOAD_GFXFF  // FreeFonts. Include access to the 48 Adafruit_GFX free fonts FF1 to FF48 and custom fonts




// Comment out the #define below to stop the SPIFFS filing system and smooth font code being loaded

// this will save ~20kbytes of FLASH

#define SMOOTH_FONT





// ##################################################################################

//

// Section 4. Other options

//

// ##################################################################################




// For RP2040 processor and SPI displays, uncomment the following line to use the PIO interface.

//#define RP2040_PIO_SPI // Leave commented out to use standard RP2040 SPI port interface




// For RP2040 processor and 8 or 16-bit parallel displays:

// The parallel interface write cycle period is derived from a division of the CPU clock

// speed so scales with the processor clock. This means that the divider ratio may need

// to be increased when overclocking. It may also need to be adjusted dependant on the

// display controller type (ILI94341, HX8357C etc.). If RP2040_PIO_CLK_DIV is not defined

// the library will set default values which may not suit your display.

// The display controller data sheet will specify the minimum write cycle period. The

// controllers often work reliably for shorter periods, however if the period is too short

// the display may not initialise or graphics will become corrupted.

// PIO write cycle frequency = (CPU clock/(4 * RP2040_PIO_CLK_DIV))

//#define RP2040_PIO_CLK_DIV 1 // 32ns write cycle at 125MHz CPU clock

//#define RP2040_PIO_CLK_DIV 2 // 64ns write cycle at 125MHz CPU clock

//#define RP2040_PIO_CLK_DIV 3 // 96ns write cycle at 125MHz CPU clock




// For the RP2040 processor define the SPI port channel used (default 0 if undefined)

//#define TFT_SPI_PORT 1 // Set to 0 if SPI0 pins are used, or 1 if spi1 pins used




// For the STM32 processor define the SPI port channel used (default 1 if undefined)

//#define TFT_SPI_PORT 2 // Set to 1 for SPI port 1, or 2 for SPI port 2




// Define the SPI clock frequency, this affects the graphics rendering speed. Too

// fast and the TFT driver will not keep up and display corruption appears.

// With an ILI9341 display 40MHz works OK, 80MHz sometimes fails

// With a ST7735 display more than 27MHz may not work (spurious pixels and lines)

// With an ILI9163 display 27 MHz works OK.




// #define SPI_FREQUENCY   1000000

// #define SPI_FREQUENCY   5000000

// #define SPI_FREQUENCY  10000000

// #define SPI_FREQUENCY  20000000

#define SPI_FREQUENCY  27000000

// #define SPI_FREQUENCY  40000000

// #define SPI_FREQUENCY  55000000 // STM32 SPI1 only (SPI2 maximum is 27MHz)

// #define SPI_FREQUENCY  80000000




// Optional reduced SPI frequency for reading TFT

#define SPI_READ_FREQUENCY  20000000




// The XPT2046 requires a lower SPI clock rate of 2.5MHz so we define that here:

#define SPI_TOUCH_FREQUENCY  2500000




// The ESP32 has 2 free SPI ports i.e. VSPI and HSPI, the VSPI is the default.

// If the VSPI port is in use and pins are not accessible (e.g. TTGO T-Beam)

// then uncomment the following line:

//#define USE_HSPI_PORT




// Comment out the following #define if "SPI Transactions" do not need to be

// supported. When commented out the code size will be smaller and sketches will

// run slightly faster, so leave it commented out unless you need it!




// Transaction support is needed to work with SD library but not needed with TFT_SdFat

// Transaction support is required if other SPI devices are connected.




// Transactions are automatically enabled by the library for an ESP32 (to use HAL mutex)

// so changing it here has no effect




// #define SUPPORT_TRANSACTIONS

And complete ST7789_Rotation.h :

// This is the command sequence that rotates the ST7789 driver coordinate frame




writecommand(TFT_MADCTL);

rotation = m % 4;




switch (rotation) {




  case 0: // Portrait

#ifdef CGRAM_OFFSET

    if (_init_width == 76 && _init_height == 284) {

      colstart = 82;

      rowstart = 18;

    }

    else if (_init_width == 135) {

      colstart = 52;

      rowstart = 40;

    }

    else if (_init_height == 280) {

      colstart = 0;

      rowstart = 20;

    }

    else if (_init_width == 172) {

      colstart = 34;

      rowstart = 0;

    }

    else if (_init_width == 170) {

      colstart = 35;

      rowstart = 0;

    }

    else {

      colstart = 0;

      rowstart = 0;

    }

#endif

    writedata(TFT_MAD_COLOR_ORDER);

    _width  = _init_width;

    _height = _init_height;

    break;





  case 1: // Landscape (Portrait + 90)

#ifdef CGRAM_OFFSET

    if (_init_width == 76 && _init_height == 284) {

      colstart = 18;

      rowstart = 82;

    }

    else if (_init_width == 135) {

      colstart = 40;

      rowstart = 53;

    }

    else if (_init_height == 280) {

      colstart = 20;

      rowstart = 0;

    }

    else if (_init_width == 172) {

      colstart = 0;

      rowstart = 34;

    }

    else if (_init_width == 170) {

      colstart = 0;

      rowstart = 35;

    }

    else {

      colstart = 0;

      rowstart = 0;

    }

#endif

    writedata(TFT_MAD_MX | TFT_MAD_MV | TFT_MAD_COLOR_ORDER);

    _width  = _init_height;

    _height = _init_width;

    break;





  case 2: // Inverted portrait (180°)

#ifdef CGRAM_OFFSET

    if (_init_width == 76 && _init_height == 284) {

      colstart = 82;

      rowstart = 18;

    }

    else if (_init_width == 135) {

      colstart = 53;

      rowstart = 40;

    }

    else if (_init_height == 280) {

      colstart = 0;

      rowstart = 20;

    }

    else if (_init_width == 172) {

      colstart = 34;

      rowstart = 0;

    }

    else if (_init_width == 170) {

      colstart = 35;

      rowstart = 0;

    }

    else {

      colstart = 0;

      rowstart = 0;

    }

#endif

    writedata(TFT_MAD_MX | TFT_MAD_MY | TFT_MAD_COLOR_ORDER);

    _width  = _init_width;

    _height = _init_height;

    break;





  case 3: // Inverted landscape (270°)

#ifdef CGRAM_OFFSET

    if (_init_width == 76 && _init_height == 284) {

      colstart = 18;

      rowstart = 82;

    }

    else if (_init_width == 135) {

      colstart = 40;

      rowstart = 52;

    }

    else if (_init_height == 280) {

      colstart = 20;

      rowstart = 0;

    }

    else if (_init_width == 172) {

      colstart = 0;

      rowstart = 34;

    }

    else if (_init_width == 170) {

      colstart = 0;

      rowstart = 35;

    }

    else {

      colstart = 0;

      rowstart = 0;

    }

#endif

    writedata(TFT_MAD_MV | TFT_MAD_MY | TFT_MAD_COLOR_ORDER);

    _width  = _init_height;

    _height = _init_width;

    break;

}

Hope this could help anyone :slight_smile: