FIFO Overflow, System Hang/Breakdown

I am quite new to all the arduino stuff and right now I am struggling with a Problem that seems to be easy, but I have honestly no idea how to deal with it.

I would like to read the data from a gyroscop and transmit the raw values via bluetooth to another device.

I am using the arduino uno r3 (it should be quite new since I bought it yesterday), the famous MPU-6050 Gyro-GY521 and for bluetooth De-HC-06BT.

I could already manage to assemble everything and send the data via bluetooth. To read the data from the gyro I am using the famous library MPU6050, which comes with some examples and seems to be the de facto standard for this.

The whole script is based on the MPU6050_DMP6 example and utilizes a SoftwareSerial to transmit the data.

Unfortunatly has two major issues:

It just stops to send data after some time (~2 Minutes) and a restart makes it send again.

It prints FIFO Overflow ~ each 20th frame, so I guess there is an ongoing failure which might stop the system.

If anybody could give some hint how to solve the »FIFO-« and »Breakdownissue« I would be very glad and I appreciate any kind of help!

Thanks in Ahead!

The whole code:

#include <SoftwareSerial.h>

// I2Cdev and MPU6050 must be installed as libraries, or else the .cpp/.h files
// for both classes must be in the include path of your project
#include "I2Cdev.h"

#include "MPU6050_6Axis_MotionApps20.h"
//#include "MPU6050.h" // not necessary if using MotionApps include file

// Arduino Wire library is required if I2Cdev I2CDEV_ARDUINO_WIRE implementation
// is used in I2Cdev.h
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
#include "Wire.h"
#endif

// class default I2C address is 0x68
// specific I2C addresses may be passed as a parameter here
// AD0 low = 0x68 (default for SparkFun breakout and InvenSense evaluation board)
// AD0 high = 0x69
MPU6050 mpu;
//MPU6050 mpu(0x69); // <-- use for AD0 high

//RX und TX gekreuzt vom Bluetooth board
SoftwareSerial serial2(10, 11); //RX, TX

#define OUTPUT_READABLE_YAWPITCHROLL

//#define LED_PIN 13 // (Arduino is 13, Teensy is 11, Teensy++ is 6)
//bool blinkState = false;

// MPU control/status vars
bool dmpReady = false; // set true if DMP init was successful
uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU
uint8_t devStatus; // return status after each device operation (0 = success, !0 = error)
uint16_t packetSize; // expected DMP packet size (default is 42 bytes)
uint16_t fifoCount; // count of all bytes currently in FIFO
uint8_t fifoBuffer[64]; // FIFO storage buffer

// orientation/motion vars
Quaternion q; // [w, x, y, z] quaternion container
VectorInt16 aa; // [x, y, z] accel sensor measurements
VectorInt16 aaReal; // [x, y, z] gravity-free accel sensor measurements
VectorInt16 aaWorld; // [x, y, z] world-frame accel sensor measurements
VectorFloat gravity; // [x, y, z] gravity vector
float euler[3]; // [psi, theta, phi] Euler angle container
float ypr[3]; // [yaw, pitch, roll] yaw/pitch/roll container and gravity vector

// packet structure for InvenSense teapot demo
uint8_t teapotPacket[14] = { '$', 0x02, 0,0, 0,0, 0,0, 0,0, 0x00, 0x00, '\r', '\n' };

// ================================================================
// === INTERRUPT DETECTION ROUTINE ===
// ================================================================

volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high
void dmpDataReady() {
mpuInterrupt = true;
}

// ================================================================
// === INITIAL SETUP ===
// ================================================================

void setup() {
// join I2C bus (I2Cdev library doesn't do this automatically)
#if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
Wire.begin();
TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz)
#elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
Fastwire::setup(400, true);
#endif

Serial.begin(115200);
while (!Serial); // wait for Leonardo enumeration, others continue immediately

serial2.begin(9600);
//serial2.println("Hello");

// initialize device
Serial.println(F("Initializing I2C devices..."));
mpu.initialize();

// verify connection
Serial.println(F("Testing device connections..."));
Serial.println(mpu.testConnection() ? F("MPU6050 connection successful") : F("MPU6050 connection failed"));

// load and configure the DMP
Serial.println(F("Initializing DMP..."));
devStatus = mpu.dmpInitialize();

// make sure it worked (returns 0 if so)
if (devStatus == 0) {
// turn on the DMP, now that it's ready
Serial.println(F("Enabling DMP..."));
mpu.setDMPEnabled(true);

// enable Arduino interrupt detection
Serial.println(F("Enabling interrupt detection (Arduino external interrupt 0)..."));
attachInterrupt(0, dmpDataReady, RISING);
mpuIntStatus = mpu.getIntStatus();

// set our DMP Ready flag so the main loop() function knows it's okay to use it
Serial.println(F("DMP ready! Waiting for first interrupt..."));
dmpReady = true;

// get expected DMP packet size for later comparison
packetSize = mpu.dmpGetFIFOPacketSize();
} else {

Serial.print(F("DMP Initialization failed (code "));
Serial.print(devStatus);
Serial.println(F(")"));
}

// configure LED for output
//pinMode(LED_PIN, OUTPUT);
}

void loop() {

// if programming failed, don't try to do anything
if (!dmpReady) return;

// wait for MPU interrupt or extra packet(s) available
while (!mpuInterrupt && fifoCount < packetSize) {

}

// reset interrupt flag and get INT_STATUS byte
mpuInterrupt = false;
mpuIntStatus = mpu.getIntStatus();

// get current FIFO count
fifoCount = mpu.getFIFOCount();

// check for overflow (this should never happen unless our code is too inefficient)
if ((mpuIntStatus & 0x10) || fifoCount == 1024) {
// reset so we can continue cleanly
mpu.resetFIFO();
//Serial.println(F("FIFO overflow!"));

// otherwise, check for DMP data ready interrupt (this should happen frequently)
} else if (mpuIntStatus & 0x02) {
// wait for correct available data length, should be a VERY short wait
while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();

// read a packet from FIFO
mpu.getFIFOBytes(fifoBuffer, packetSize);

// track FIFO count here in case there is > 1 packet available
// (this lets us immediately read more without waiting for an interrupt)
fifoCount -= packetSize;

#ifdef OUTPUT_READABLE_YAWPITCHROLL
// display Euler angles in degrees
mpu.dmpGetQuaternion(&q, fifoBuffer);
mpu.dmpGetGravity(&gravity, &q);
mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);

serial2.print(ypr[0] * 180/M_PI);
serial2.print(",");
serial2.print(ypr[1] * 180/M_PI);
serial2.print(",");
serial2.print(ypr[2] * 180/M_PI);
serial2.print("\n");

#endif

delay(5);
}
}

Hi

From your code description, it seems you have overflow issue with mpu.
The reason is that, your MPU update frequency is too higher than mpu.getFIFOBytes(fifoBuffer, packetSize);

When the software FIFO full asserts and it keeps input the FIFO, the overflow happens.

Here are several ways you can solve this

  1. slow down the MPU6050 UPDATE frequency by register configuration. As I recall, it would have filtered XYZ update at maximun 80Hz. However, this could be configured.

2)try mpu.getFIFOBytes(fifoBuffer, packetSize) in an more efficient way. Arduino should have over 10Mhz process frequncy, it would be strange for such overflow occurs. Also enlarge the packetsize would also be useful if it is allowed to do this