Switch/Case not working and cant figure out why

Hi recently I have been working with Arduino Nano and the module HC-05.
The problem comes when I try to use witch case to do one thing or the other depending on what the Bluetooth message was. This is the code of the function:

void readBT(){
  String lectura;
  char opcion = 'o';
  int opcionNum=0;
  // Keep reading from HC-05 and send to Arduino Serial Monitor
    if(BTserial.available()>0){  
      lectura = BTserial.readString();
      lectura.trim();
      Serial.println(lectura); 
      opcion=lectura.charAt(0);
      opcionNum=opcion;
      Serial.print("La opcion elegida es ");
      Serial.println(opcionNum);
      switch(opcionNum){
        case 99:
          String nrojo = lectura.substring(1,4);
          String nverde = lectura.substring(4,7);
          String nazul = lectura.substring(7,10);
          rojo = nrojo.toInt();
          verde = nverde.toInt();
          azul = nazul.toInt();
          Serial.println("Nuevo color: "+nrojo+" "+nverde+" "+nazul);
          break;
        case 118:
          String nVel = lectura.substring(1,7);
          restaIntensidad= nVel.toFloat();
          Serial.print("Nueva velocidad: ");
          Serial.println(restaIntensidad);
          break;
        case 115:
          String nSens = lectura.substring(1,6);
          sensitivity= nSens.toFloat();
          Serial.print("Nueva sensitividad: ");
          Serial.println(sensitivity);
          break;
        case 109:
          char nmode=lectura.charAt(1);
          Serial.println("Nuevo modo: "+nmode);
          mode = nmode;
          break;
        default:
          Serial.println("Opcion desconocida: "+opcion);
          break;
      }
      lectura = "";
      BTserial.flush();
        
   }
}

Im going absolutely mad, I have tried the module on its own and it works perfectly. Also the only option on the switch that appears to worc is case 99, wich for me makes it even more puzzling.
Hopefully there is something very obvious that I cannot see because tiredness I guess, anyway thank you. Im very new to the forum so if there is anything else I should add please tell me!

Deducing from the fact that option 99 works - you send to arduino not strings "99" and "109", but bytes with values 99, 109.
Right?

I guess that the function trim() removed from the string all non-printable characters. Perhaps char(99) is on the printing table, but others are not

Even if I not exactly catch the problem, using text functions like trim() for bare bytes is not a good idea.

These values represent c, v, s, and m, so they should work okay I think.

I am more concerned about accessing any character but lectura[0] without checking the size of lectura. readString could have terminated after a timeout.

yes, it will be issue if BT messages are not terminated properly. May be only message 99 has terminator and this fact explains how it works...

But now I don't understand why OP used bytes and don't used corresponding characters. It will be more logical using text-like messages in bluetooth

Sorry about the bytes, I used to have the text messages but since it didnt work and I couldnt deduce why I started trying everything. Here is a more simplistic but equally notworking version of the code:

void readBT(){
  String lectura;
  char opcion = 'o';

  // Keep reading from HC-05 and send to Arduino Serial Monitor
    if(BTserial.available()>0){  
      lectura = BTserial.readString();
      Serial.println(lectura); 
      opcion=lectura.charAt(0);
      Serial.print("La opcion elegida es ");
      Serial.println(opcion);
      switch(opcion){
        case 'c':
          String nrojo = lectura.substring(1,4);
          String nverde = lectura.substring(4,7);
          String nazul = lectura.substring(7,10);
          rojo = nrojo.toInt();
          verde = nverde.toInt();
          azul = nazul.toInt();
          Serial.println("Nuevo color: "+nrojo+" "+nverde+" "+nazul);
          break;
        case 'v':
          String nVel = lectura.substring(1,7);
          restaIntensidad= nVel.toFloat();
          Serial.print("Nueva velocidad: ");
          Serial.println(restaIntensidad);
          break;
        case 's':
          String nSens = lectura.substring(1,6);
          sensitivity= nSens.toFloat();
          Serial.print("Nueva sensitividad: ");
          Serial.println(sensitivity);
          break;
        case 'm':
          char nmode=lectura.charAt(1);
          Serial.println("Nuevo modo: "+nmode);
          mode = nmode;
          break;
        default:
          Serial.println("Opcion desconocida: "+opcion);
          break;
      }
      lectura = "";
      BTserial.flush();
        
   }
}

what serial output do you get?


Hope you can see the image, im not used to uploading pictures.
As you can see for some reason only 'c' works, not even the default.
Also I wanted to thank you all for your help, I didnt expected such a fast response.

Could you add to beginning of each case debugging prints like this:

 case 'v':
    Serial.print("Entering case ");
    Serial.println("v");

and show result in the forum

Sure heres the result:


Also the new code in case there is something missing or wrong that im not catching:

void readBT(){
  String lectura;
  char opcion = 'o';

  // Keep reading from HC-05 and send to Arduino Serial Monitor
    if(BTserial.available()>0){  
      lectura = BTserial.readString();
      Serial.println(lectura); 
      opcion=lectura.charAt(0);
      Serial.print("La opcion elegida es ");
      Serial.println(opcion);
      switch(opcion){
        case 'c':
          Serial.print("Entering case ");
          Serial.println("c");
          String nrojo = lectura.substring(1,4);
          String nverde = lectura.substring(4,7);
          String nazul = lectura.substring(7,10);
          rojo = nrojo.toInt();
          verde = nverde.toInt();
          azul = nazul.toInt();
          Serial.println("Nuevo color: "+nrojo+" "+nverde+" "+nazul);
          break;
        case 'v':
          Serial.print("Entering case ");
          Serial.println("v");
          String nVel = lectura.substring(1,7);
          restaIntensidad= nVel.toFloat();
          Serial.print("Nueva velocidad: ");
          Serial.println(restaIntensidad);
          break;
        case 's':
          Serial.print("Entering case ");
          Serial.println("s");
          String nSens = lectura.substring(1,6);
          sensitivity= nSens.toFloat();
          Serial.print("Nueva sensitividad: ");
          Serial.println(sensitivity);
          break;
        case 'm':
          Serial.print("Entering case ");
          Serial.println("m");
          char nmode=lectura.charAt(1);
          Serial.println("Nuevo modo: "+nmode);
          mode = nmode;
          break;
        default:
          Serial.print("Entering case ");
          Serial.println("default");
          Serial.println("Opcion desconocida: "+opcion);
          break;
      }
      lectura = "";
      BTserial.flush();
        
   }
}

Thank you

It seems that the program does not even enter the body of the cases 's' 'v' 'm'....

Please add printing opcion as HEX before entering to switch operator

and try to change order of cases...

Could you point me on how to do that? O the mean time I will mchange the order as you sugg
ested

 switch(opcion){
       case 'v':
          Serial.print("Entering case ");
          Serial.println("v");
          String nVel = lectura.substring(1,7);
          restaIntensidad= nVel.toFloat();
          Serial.print("Nueva velocidad: ");
          Serial.println(restaIntensidad);
          break;
        case 'c':
          Serial.print("Entering case ");
          Serial.println("c");
          String nrojo = lectura.substring(1,4);
          String nverde = lectura.substring(4,7);
          String nazul = lectura.substring(7,10);
          rojo = nrojo.toInt();
          verde = nverde.toInt();
          azul = nazul.toInt();
          Serial.println("Nuevo color: "+nrojo+" "+nverde+" "+nazul);
          break;
     
        case 's':
          Serial.print("Entering case ");
          Serial.println("s");
          String nSens = lectura.substring(1,6);
          sensitivity= nSens.toFloat();
          Serial.print("Nueva sensitividad: ");
          Serial.println(sensitivity);
          break;
        case 'm':
          Serial.print("Entering case ");
          Serial.println("m");
          char nmode=lectura.charAt(1);
          Serial.println("Nuevo modo: "+nmode);
          mode = nmode;
          break;
        default:
          Serial.print("Entering case ");
          Serial.println("default");
          Serial.println("Opcion desconocida: "+opcion);
          break;
      }

Post all your code - there may be something wrong elsewhere.

I am wondering which case will work, if the 'v' case place before 'c' ?

I didnt meant the order change but the HEX part haha. Anyway interesting thisgs, I tried the order change and this is the result, but first the code:

void readBT(){
  String lectura;
  char opcion = 'o';

  // Keep reading from HC-05 and send to Arduino Serial Monitor
    if(BTserial.available()>0){  
      lectura = BTserial.readString();
      Serial.println(lectura); 
      opcion=lectura.charAt(0);
      Serial.print("La opcion elegida es ");
      Serial.println( opcion);
      switch(opcion){
        case 'm':
          Serial.print("Entering case ");
          Serial.println("m");
          char nmode=lectura.charAt(1);
          Serial.println("Nuevo modo: "+nmode);
          mode = nmode;
          break;
        case 'v':
          Serial.print("Entering case ");
          Serial.println("v");
          String nVel = lectura.substring(1,7);
          restaIntensidad= nVel.toFloat();
          Serial.print("Nueva velocidad: ");
          Serial.println(restaIntensidad);
          break;
        case 's':
          Serial.print("Entering case ");
          Serial.println("s");
          String nSens = lectura.substring(1,6);
          sensitivity= nSens.toFloat();
          Serial.print("Nueva sensitividad: ");
          Serial.println(sensitivity);
          break;
        
        case 'c':
          Serial.print("Entering case ");
          Serial.println("c");
          String nrojo = lectura.substring(1,4);
          String nverde = lectura.substring(4,7);
          String nazul = lectura.substring(7,10);
          rojo = nrojo.toInt();
          verde = nverde.toInt();
          azul = nazul.toInt();
          Serial.println("Nuevo color: "+nrojo+" "+nverde+" "+nazul);
          break;
        default:
          Serial.print("Entering case ");
          Serial.println("default");
          Serial.println("Opcion desconocida: "+opcion);
          break;
      }
      lectura = "";
      BTserial.flush();
        
   }
}

After this the case M seems to have entered but the program blocked himself shortly after.
Heres another test where none of the options worked, when I introduced m4 worked wonderfully but as soon I introduced m1 it blocked:


Im going to try and switch to v as a first case, maybe it throws some light

Here it is, but I must say its not very elegant, its an amalgamation of the Micro Beat Detection from Stephan Schultz (GitHub - Steppschuh/Micro-Beat-Detection: Beat detection using microphone input on microcontrollers) with some more sound detection modes added by me. Again, sorry for the sphagetti:



#define LOG_OUT 1 // use the log output function
#define FHT_N 128 // amount of bins to use
#include <SoftwareSerial.h>
#include <FHT.h> // include the library
#include <Adafruit_NeoPixel.h>



#define FreqLog // use log scale for FHT frequencies
#define FreqGainFactorBits 0
#define FreqSerialBinary
#define VolumeGainFactorBits 0
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))

#ifdef __AVR__
#include <avr/power.h> // Required for 16 MHz Adafruit Trinket
#endif

#define PIN      6
#define NUMPIXELS 14



//Bluetooth

SoftwareSerial BTserial(2, 3); // RX | TX

Adafruit_NeoPixel pixels(NUMPIXELS, PIN, NEO_GRB + NEO_KHZ800);
//number for deciding sound detection mode
char mode = '0';
float sensitivity=0.23;
bool firstTime = true;


int sensorValue1;
int sensorValue2;
int sensorValue3;

int nSamples = 150;
int values[150];
int valuesIndex=0;
float suma = 0;
int media = 0;
float threshhold;
int maxValue;
int minValue;
float restaIntensidad = 0.2;


int rojo = 255;
int verde = 255;
int azul = 255;

int rojoActual=0;
int verdeActual=0;
int azulActual =0;

//BT



// Set to true if you want to use the FHT 128 channel analyser to visualize
// the detected frequencies. Will disable beat detection.
const bool LOG_FREQUENCY_DATA = false;

// Set to true if the light should be based on detected beats instead
// of detected amplitudes.
const bool PERFORM_BEAT_DETECTION = false;

const int SOUND_REFERENCE_PIN = 8; // D8
const int HAT_LIGHTS_PIN = 9; // D9
const int HAT_LIGHTS_LOW_PIN = 11; // D11
const int HAT_LIGHTS_HIGH_PIN = 12; // D12
const int HAT_LIGHTS_PULSE_PIN = 13; // D13

const int LIGHT_PULSE_DELAY = 10000;
const int LIGHT_PULSE_DURATION = 2000;

const int LIGHT_FADE_OUT_DURATION = 200; // good value range is [100:1000]
const float MINIMUM_LIGHT_INTENSITY = 0; // in range [0:1]
const float MAXIMUM_LIGHT_INTENSITY = 1; // in range [0:1]

const int MAXIMUM_SIGNAL_VALUE = 1024;

const int OVERALL_FREQUENCY_RANGE_START = 2; // should be 0, but first 2 bands produce too much noise
const int OVERALL_FREQUENCY_RANGE_END = FHT_N / 2;
const int OVERALL_FREQUENCY_RANGE = OVERALL_FREQUENCY_RANGE_END - OVERALL_FREQUENCY_RANGE_START;

const int FIRST_FREQUENCY_RANGE_START = 2;
const int FIRST_FREQUENCY_RANGE_END = 4;
const int FIRST_FREQUENCY_RANGE = FIRST_FREQUENCY_RANGE_END - FIRST_FREQUENCY_RANGE_START;

const int SECOND_FREQUENCY_RANGE_START = 2;
const int SECOND_FREQUENCY_RANGE_END = 6;
const int SECOND_FREQUENCY_RANGE = SECOND_FREQUENCY_RANGE_END - SECOND_FREQUENCY_RANGE_START;

const int MAXIMUM_BEATS_PER_MINUTE = 200;
const int MINIMUM_DELAY_BETWEEN_BEATS = 60000L / MAXIMUM_BEATS_PER_MINUTE;
const int SINGLE_BEAT_DURATION = 100; // good value range is [50:150]

const int FREQUENCY_MAGNITUDE_SAMPLES = 5; // good value range is [5:15]

int frequencyMagnitudeSampleIndex = 0;

int currentOverallFrequencyMagnitude = 0;
int totalOverallFrequencyMagnitude = 0;
int averageOverallFrequencyMagnitude = 0;
int overallFrequencyMagnitudeVariance = 0;
byte overallFrequencyMagnitudes[FREQUENCY_MAGNITUDE_SAMPLES];

int currentFirstFrequencyMagnitude = 0;
int totalFirstFrequencyMagnitude = 0;
int averageFirstFrequencyMagnitude = 0;
int firstFrequencyMagnitudeVariance = 0;
byte firstFrequencyMagnitudes[FREQUENCY_MAGNITUDE_SAMPLES];

int currentSecondFrequencyMagnitude = 0;
int totalSecondFrequencyMagnitude = 0;
int averageSecondFrequencyMagnitude = 0;
int secondFrequencyMagnitudeVariance = 0;
byte secondFrequencyMagnitudes[FREQUENCY_MAGNITUDE_SAMPLES];

int currentSignal = 0;
int totalSignal = 0;
int averageSignal = 0;
int signalVariance = 0;
byte signals[FREQUENCY_MAGNITUDE_SAMPLES];

long lastBeatTimestamp = 0;
long durationSinceLastBeat = 0;
float beatProbability = 0;
float beatProbabilityThreshold = 0.5;

long lightIntensityBumpTimestamp = 0;
float lightIntensityBumpValue = 0;
float lightIntensityValue = 0;

long lastPulseTimestamp = 0;

void setup() {
  
  pixels.begin();
  for(int i = 0; i < nSamples; i++){
    values[i]=390;
  }
  Serial.begin(9600);
  Serial.println("Arduino is ready");
  // HC-05 default serial speed for commincation mode is 9600
  BTserial.begin(9600);
}

/**
 * Analog to Digital Conversion needs to be configured to free running mode
 * in order to read the sound sensor values at a high frequency.
 *
 * See: http://maxembedded.com/2011/06/the-adc-of-the-avr/
 */
void setupADC() {
  ADCSRA = 0xe0+7; // "ADC Enable", "ADC Start Conversion", "ADC Auto Trigger Enable" and divider.
  ADMUX = 0x0; // use adc0. Use ARef pin for analog reference (same as analogReference(EXTERNAL)).
  ADMUX |= 0x40; // Use Vcc for analog reference.
  DIDR0 = 0x01; // turn off the digital input for adc0
}

void loop() {
  //El modo cero estara activo hasta que se cambie, indicando que se necesita conectar la app BT
  readBT();
  switch(mode){
    case '0':
      btSearchMode();
      break;
    case '1':
      pulsatingMode();
      break;
    case '2':
      onMode();
      break;
    case '3':
      offMode();
      break;
    case '4':
      audioDetectionMode();
      break;
    case '5':
      beatDetectionMode();
      break;
    default:
      Serial.println("Unregistered mode");
      break;
  }
}
//Funcion encargada de apagar todas las luces del dispositivo
void offMode(){
  pixels.setPixelColor(0, pixels.Color(0,0,0));
  pixels.show();
}
//Funcion encargada de encender todas las luces del dispositivo
void onMode(){
  pixels.setPixelColor(0, pixels.Color(rojo, verde, azul));
  pixels.show();
}
//Funcion encargada de crear un patron pulsante. Sera en modo neutro del dispositivo
void pulsatingMode(){
  float restaRojo = restaIntensidad*rojo;
  float restaVerde = restaIntensidad*verde;
  float restaAzul = restaIntensidad*azul;
  while(rojoActual>restaRojo&&verdeActual>restaVerde&&azulActual>restaAzul){
      rojoActual=rojo;
      azulActual=azul;
      verdeActual=verde;
      if(rojoActual< restaRojo){
        rojoActual=0;
      }
      else{
        rojoActual-=restaRojo;
      }
      if(verdeActual<restaVerde){
        verdeActual=0;
      }
      else{
        verdeActual-=restaVerde;
      }  
      if(azulActual<restaAzul){
        azulActual=0;
      }
      else{
        azulActual-=restaAzul;
      }  
      pixels.setPixelColor(0, pixels.Color(rojoActual, verdeActual, azulActual));
      pixels.show();
      delay(20);
    }
    while(rojoActual<(rojo-restaRojo)&&verdeActual<(verde-restaVerde)&&azulActual<(azul-restaAzul)){
      if(rojoActual<(rojo-restaRojo)){
        rojoActual+=restaRojo;
      }
      if(verdeActual<(verde-restaVerde)){
        verdeActual+=restaVerde;
      }  
      if(azulActual<(azul-restaAzul)){
        azulActual+=restaAzul;
      }  
      pixels.setPixelColor(0, pixels.Color(rojoActual, verdeActual, azulActual));
      pixels.show();
      delay(20);
    }
    
}
//Funcion encargada de crear un patron intermitente en las luces del dispositivo indicando la necesidad de conectar BT
void btSearchMode(){
  pixels.setPixelColor(0, pixels.Color(40, 40, 255));
  pixels.show();
  delay(150);
  pixels.setPixelColor(0, pixels.Color(0,0,0));
  pixels.show();
  delay(100);
  pixels.setPixelColor(0, pixels.Color(40, 40, 255));
  pixels.show();
  delay(400);
  pixels.setPixelColor(0, pixels.Color(0,0,0));
  pixels.show();
  delay(1000);
}
//Funcion encargada de leer los comandos Bluetooth y cambiar los parametros segun:
void readBT(){
  String lectura;
  char opcion = 'o';

  // Keep reading from HC-05 and send to Arduino Serial Monitor
    if(BTserial.available()>0){  
      lectura = BTserial.readString();
      Serial.println(lectura); 
      opcion=lectura.charAt(0);
      Serial.print("La opcion elegida es ");
      Serial.println( opcion);
      switch(opcion){
        case 'm':
          Serial.print("Entering case ");
          Serial.println("m");
          char nmode=lectura.charAt(1);
          Serial.println("Nuevo modo: "+nmode);
          mode = nmode;
          break;
        case 'v':
          Serial.print("Entering case ");
          Serial.println("v");
          String nVel = lectura.substring(1,7);
          restaIntensidad= nVel.toFloat();
          Serial.print("Nueva velocidad: ");
          Serial.println(restaIntensidad);
          break;
        case 's':
          Serial.print("Entering case ");
          Serial.println("s");
          String nSens = lectura.substring(1,6);
          sensitivity= nSens.toFloat();
          Serial.print("Nueva sensitividad: ");
          Serial.println(sensitivity);
          break;
        
        case 'c':
          Serial.print("Entering case ");
          Serial.println("c");
          String nrojo = lectura.substring(1,4);
          String nverde = lectura.substring(4,7);
          String nazul = lectura.substring(7,10);
          rojo = nrojo.toInt();
          verde = nverde.toInt();
          azul = nazul.toInt();
          Serial.println("Nuevo color: "+nrojo+" "+nverde+" "+nazul);
          break;
        default:
          Serial.print("Entering case ");
          Serial.println("default");
          Serial.println("Opcion desconocida: "+opcion);
          break;
      }
      lectura = "";
      BTserial.flush();
        
   }
}


void beatDetectionMode(){
  if(firstTime){
      setupADC();

      pinMode(LED_BUILTIN, OUTPUT);
      pinMode(HAT_LIGHTS_PIN, OUTPUT);
      pinMode(HAT_LIGHTS_LOW_PIN, OUTPUT);
      pinMode(HAT_LIGHTS_HIGH_PIN, OUTPUT);
      pinMode(HAT_LIGHTS_PULSE_PIN, OUTPUT);
      pinMode(SOUND_REFERENCE_PIN, OUTPUT);
  
      digitalWrite(HAT_LIGHTS_PIN, HIGH);
      digitalWrite(SOUND_REFERENCE_PIN, HIGH);
  
      analogWrite(HAT_LIGHTS_LOW_PIN, 255 * MINIMUM_LIGHT_INTENSITY);
      analogWrite(HAT_LIGHTS_HIGH_PIN, 255 * MAXIMUM_LIGHT_INTENSITY);

      for (int i = 0; i < FREQUENCY_MAGNITUDE_SAMPLES; i++) {
        overallFrequencyMagnitudes[i] = 0;
        firstFrequencyMagnitudes[i] = 0;
        secondFrequencyMagnitudes[i] = 0;
        signals[i] = 0;
      }
      firstTime=false;
    }
    if (LOG_FREQUENCY_DATA) {
      readAudioSamples();
      getFrequencyData();
      logFrequencyData();
    } else {
      Serial.print(String(millis()));
      readAudioSamples();
      if (PERFORM_BEAT_DETECTION) {
        getFrequencyData();
        processFrequencyData();
        updateBeatProbability();
        updateLightIntensityBasedOnBeats();
      } else {
        updateLightIntensityBasedOnAmplitudes();
      }
      updateLights();
      Serial.println("");
}
}

void audioDetectionMode(){
  sensorValue1 = analogRead(A0);
  sensorValue2 = analogRead(A1);
  sensorValue3 = analogRead(A2);
  values[valuesIndex]=(sensorValue1+sensorValue2+sensorValue3)/3;
  
    for(int i = 0; i < nSamples; i++){
      suma+=values[i];
      //Estos ifs se encargan de encontrar el maximo y el minimo para poder calcular el limite de activación
      if(values[i]>maxValue){
        maxValue=values[i];
      }
      if(values[i]<minValue){
        minValue=values[i];
      }
    }
    media = suma/nSamples;
    //Esta linea calcula el limite de activación
    threshhold = (maxValue-minValue)*sensitivity;
    if(values[valuesIndex]>media+threshhold||values[valuesIndex]<media-threshhold){
      rojoActual= rojo;
      verdeActual= verde;
      azulActual=azul;
    }
    else{
      float restaRojo = restaIntensidad*rojo;
      float restaVerde = restaIntensidad*verde;
      float restaAzul = restaIntensidad*azul;
      if(rojoActual< restaRojo){
        rojoActual=0;
      }
      else{
        rojoActual-=restaRojo;
      }
      if(verdeActual<restaVerde){
        verdeActual=0;
      }
      else{
        verdeActual-=restaVerde;
      }  
      if(azulActual<restaAzul){
        azulActual=0;
      }
      else{
        azulActual-=restaAzul;
      }  
    } 

    pixels.setPixelColor(0, pixels.Color(rojoActual, verdeActual, azulActual));
    pixels.show();

  
    valuesIndex=(valuesIndex+1)%(nSamples);
    maxValue = 0;
    minValue = 1000;
    suma=0;
  
}

/**
 * Will read the sound sensor values from pin A0.
 */
void readAudioSamples() {
  long currentAverage = 0;
  long currentMaximum = 0;
  long currentMinimum = MAXIMUM_SIGNAL_VALUE;
  
  for (int i = 0; i < FHT_N; i++) { // save 256 samples
    while (!(ADCSRA & /*0x10*/_BV(ADIF))); // wait for adc to be ready (ADIF)
    sbi(ADCSRA, ADIF); // restart adc
    byte m = ADCL; // fetch adc data
    byte j = ADCH;
    int k = ((int) j << 8) | m; // form into an int
    
    currentMinimum = min(currentMinimum, k);
    currentMaximum = max(currentMaximum, k);
    currentAverage += k;
    
    k -= 0x0200; // form into a signed int
    k <<= 6; // form into a 16b signed int
    k <<= FreqGainFactorBits;
    
    fht_input[i] = k; // put real data into bins
  }
  
  currentAverage /= FHT_N;
  
  int signalDelta = currentMaximum - currentAverage;
  currentSignal = currentAverage + (2 * signalDelta);
  
  constrain(currentSignal, 0, currentMaximum);
  
  processHistoryValues(
    signals, 
    frequencyMagnitudeSampleIndex, 
    currentSignal, 
    totalSignal, 
    averageSignal, 
    signalVariance
  );
  
  //logValue("A", (float) currentAverage / MAXIMUM_SIGNAL_VALUE, 10);
  //logValue("M", (float) currentMaximum / MAXIMUM_SIGNAL_VALUE, 10);
  logValue("S", (float) currentSignal / MAXIMUM_SIGNAL_VALUE, 20);
}

/**
 * Will run the Fast Hartley Transform to convert the time domain signals
 * to the frequency domain.
 *
 * See: http://wiki.openmusiclabs.com/wiki/ArduinoFHT
 */
void getFrequencyData() {
  fht_window(); // window the data for better frequency response
  fht_reorder(); // reorder the data before doing the FHT
  fht_run(); // process the data in the FHT
  fht_mag_log(); // get the magnitude of each bin in the FHT
}

void logFrequencyData() {
#ifdef FreqSerialBinary
  // print as binary
  Serial.write(255); // send a start byte
  Serial.write(fht_log_out, FHT_N / 2); // send out the data
#else
  // print as text
  for (int i = 0; i < FHT_N / 2; i++) {
      Serial.print(fht_log_out[i]);
      Serial.print(',');
  }
#endif
}

/**
 * Will extract insightful features from the frequency data in order
 * to perform the beat detection.
 */
void processFrequencyData() {
  // each of the methods below will:
  //  - get the current frequency magnitude
  //  - add the current magnitude to the history
  //  - update relevant features
  processOverallFrequencyMagnitude();
  processFirstFrequencyMagnitude();
  processSecondFrequencyMagnitude();
  
  // prepare the magnitude sample index for the next update
  frequencyMagnitudeSampleIndex += 1;
  if (frequencyMagnitudeSampleIndex >= FREQUENCY_MAGNITUDE_SAMPLES) {
    frequencyMagnitudeSampleIndex = 0; // wrap the index
  }
}

void processOverallFrequencyMagnitude() {
  currentOverallFrequencyMagnitude = getFrequencyMagnitude(
    fht_log_out, 
    OVERALL_FREQUENCY_RANGE_START, 
    OVERALL_FREQUENCY_RANGE_END
  );
  
  processHistoryValues(
    overallFrequencyMagnitudes, 
    frequencyMagnitudeSampleIndex, 
    currentOverallFrequencyMagnitude, 
    totalOverallFrequencyMagnitude, 
    averageOverallFrequencyMagnitude, 
    overallFrequencyMagnitudeVariance
  );
}

void processFirstFrequencyMagnitude() {
  currentFirstFrequencyMagnitude = getFrequencyMagnitude(
    fht_log_out, 
    FIRST_FREQUENCY_RANGE_START, 
    FIRST_FREQUENCY_RANGE_END
  );
  
  processHistoryValues(
    firstFrequencyMagnitudes, 
    frequencyMagnitudeSampleIndex, 
    currentFirstFrequencyMagnitude, 
    totalFirstFrequencyMagnitude, 
    averageFirstFrequencyMagnitude, 
    firstFrequencyMagnitudeVariance
  );
}

void processSecondFrequencyMagnitude() {
  currentSecondFrequencyMagnitude = getFrequencyMagnitude(
    fht_log_out, 
    SECOND_FREQUENCY_RANGE_START, 
    SECOND_FREQUENCY_RANGE_END
  );
  
  processHistoryValues(
    secondFrequencyMagnitudes, 
    frequencyMagnitudeSampleIndex, 
    currentSecondFrequencyMagnitude, 
    totalSecondFrequencyMagnitude, 
    averageSecondFrequencyMagnitude, 
    secondFrequencyMagnitudeVariance
  );
}

byte getFrequencyMagnitude(byte frequencies[], const int startIndex, const int endIndex) {
  int total = 0;
  int average = 0;
  int maximum = 0;
  int minimum = MAXIMUM_SIGNAL_VALUE;
  int current;
  
  for (int i = startIndex; i < endIndex; i++) {
    current = frequencies[i];
    total += current;
    maximum = max(maximum, current);
    minimum = min(minimum, current);
  }
  
  average = total / (endIndex - startIndex);
  
  int value = average;
  //int value = maximum - average;
  
  //logValue("F", (float) value / 128, 10);
  
  return value;
}

void processHistoryValues(byte history[], int &historyIndex, int &current, int &total, int &average, int &variance) {
  total -= history[historyIndex]; // subtract the oldest history value from the total
  total += (byte) current; // add the current value to the total
  history[historyIndex] = current; // add the current value to the history
  
  average = total / FREQUENCY_MAGNITUDE_SAMPLES;
  
  // update the variance of frequency magnitudes
  long squaredDifferenceSum = 0;
  for (int i = 0; i < FREQUENCY_MAGNITUDE_SAMPLES; i++) {
    squaredDifferenceSum += pow(history[i] - average, 2);
  }
  variance = (double) squaredDifferenceSum / FREQUENCY_MAGNITUDE_SAMPLES;
}

/**
 * Will update the beat probability, a value between 0 and 1
 * indicating how likely it is that there's a beat right now.
 */
void updateBeatProbability() {
  beatProbability = 1;
  beatProbability *= calculateSignalChangeFactor();
  beatProbability *= calculateMagnitudeChangeFactor();
  beatProbability *= calculateVarianceFactor();
  beatProbability *= calculateRecencyFactor();
  
  if (beatProbability >= beatProbabilityThreshold) {
    lastBeatTimestamp = millis();
    durationSinceLastBeat = 0;
  }
  
  logValue("B", beatProbability, 5);
}

/**
 * Will calculate a value in range [0:2] based on the magnitude changes of
 * different frequency bands.
 * Low values are indicating a low beat probability.
 */
float calculateSignalChangeFactor() {
  float aboveAverageSignalFactor;
  if (averageSignal < 75 || currentSignal < 150) {
    aboveAverageSignalFactor = 0;
  } else {
    aboveAverageSignalFactor = ((float) currentSignal / averageSignal);
    aboveAverageSignalFactor = constrain(aboveAverageSignalFactor, 0, 2);
  }
  
  //logValue("SC", (float) currentSignal / 512, 10);
  //logValue("SA", (float) averageSignal / 512, 10);
  logValue("SF", aboveAverageSignalFactor / 2, 2);
  return aboveAverageSignalFactor;
}

/**
 * Will calculate a value in range [0:1] based on the magnitude changes of
 * different frequency bands.
 * Low values are indicating a low beat probability.
 */
float calculateMagnitudeChangeFactor() {
  float changeThresholdFactor = 1.1;
  if (durationSinceLastBeat < 750) {
    // attempt to not miss consecutive beats
    changeThresholdFactor *= 0.95;
  } else if (durationSinceLastBeat > 1000) {
    // reduce false-positives
    changeThresholdFactor *= 1.05;
  }
  
  // current overall magnitude is higher than the average, probably 
  // because the signal is mainly noise
  float aboveAverageOverallMagnitudeFactor = ((float) currentOverallFrequencyMagnitude / averageOverallFrequencyMagnitude);
  aboveAverageOverallMagnitudeFactor -= 1.05;
  aboveAverageOverallMagnitudeFactor *= 10;
  aboveAverageOverallMagnitudeFactor = constrain(aboveAverageOverallMagnitudeFactor, 0, 1);
  
  // current magnitude is higher than the average, probably 
  // because the there's a beat right now
  float aboveAverageFirstMagnitudeFactor = ((float) currentFirstFrequencyMagnitude / averageFirstFrequencyMagnitude);
  aboveAverageOverallMagnitudeFactor -= 0.1;
  aboveAverageFirstMagnitudeFactor *= 1.5;
  aboveAverageFirstMagnitudeFactor = pow(aboveAverageFirstMagnitudeFactor, 3);
  aboveAverageFirstMagnitudeFactor /= 3;
  aboveAverageFirstMagnitudeFactor -= 1.25;
  
  aboveAverageFirstMagnitudeFactor = constrain(aboveAverageFirstMagnitudeFactor, 0, 1);
  
  float aboveAverageSecondMagnitudeFactor = ((float) currentSecondFrequencyMagnitude / averageSecondFrequencyMagnitude);
  aboveAverageSecondMagnitudeFactor -= 1.01;
  aboveAverageSecondMagnitudeFactor *= 10;
  aboveAverageSecondMagnitudeFactor = constrain(aboveAverageSecondMagnitudeFactor, 0, 1);
  
  float magnitudeChangeFactor = aboveAverageFirstMagnitudeFactor;
  if (magnitudeChangeFactor > 0.15) {
    magnitudeChangeFactor = max(aboveAverageFirstMagnitudeFactor, aboveAverageSecondMagnitudeFactor);
  }
  
  if (magnitudeChangeFactor < 0.5 && aboveAverageOverallMagnitudeFactor > 0.5) {
    // there's no bass related beat, but the overall magnitude changed significantly
    magnitudeChangeFactor = max(magnitudeChangeFactor, aboveAverageOverallMagnitudeFactor);
  } else {
    // this is here to avoid treating signal noise as beats
    //magnitudeChangeFactor *= 1 - aboveAverageOverallMagnitudeFactor;
  }
  
  //float maximumMagnitude = 128; //128;
  
  //logValue("CO", (currentOverallFrequencyMagnitude - averageOverallFrequencyMagnitude) / maximumMagnitude, 5);
  //logValue("C1", (currentFirstFrequencyMagnitude - averageFirstFrequencyMagnitude) / maximumMagnitude, 5);
  //logValue("C2", (currentSecondFrequencyMagnitude - averageSecondFrequencyMagnitude) / maximumMagnitude, 5);

  //logValue("CO", (currentOverallFrequencyMagnitude) / maximumMagnitude, 10);
  //logValue("C1", (currentFirstFrequencyMagnitude) / maximumMagnitude, 10);
  //logValue("C2", (currentSecondFrequencyMagnitude) / maximumMagnitude, 10);

  logValue("AO", aboveAverageOverallMagnitudeFactor, 2);
  logValue("A1", aboveAverageFirstMagnitudeFactor, 10);
  logValue("A2", aboveAverageSecondMagnitudeFactor, 10);
  //logValue("A1|2", max(aboveAverageFirstMagnitudeFactor, aboveAverageSecondMagnitudeFactor), 1);
  
  logValue("M", magnitudeChangeFactor, 1);
  
  return magnitudeChangeFactor;
}

/**
 * Will calculate a value in range [0:1] based on variance in the first and second
 * frequency band over time. The variance will be high if the magnitude of bass
 * frequencies changed in the last few milliseconds.
 * Low values are indicating a low beat probability.
 */
float calculateVarianceFactor() {
  // a beat also requires a high variance in recent frequency magnitudes
  float firstVarianceFactor = ((float) (firstFrequencyMagnitudeVariance - 50) / 20) - 1;
  firstVarianceFactor = constrain(firstVarianceFactor, 0, 1);
  
  float secondVarianceFactor = ((float) (secondFrequencyMagnitudeVariance - 50) / 20) - 1;
  secondVarianceFactor = constrain(secondVarianceFactor, 0, 1);
  
  float varianceFactor = max(firstVarianceFactor, secondVarianceFactor);
  
  logValue("V", varianceFactor, 1);
  
  return varianceFactor;
}

/**
 * Will calculate a value in range [0:1] based on the recency of the last detected beat.
 * Low values are indicating a low beat probability.
 */
float calculateRecencyFactor() {
  float recencyFactor = 1;
  durationSinceLastBeat = millis() - lastBeatTimestamp;
  
  int referenceDuration = MINIMUM_DELAY_BETWEEN_BEATS - SINGLE_BEAT_DURATION;
  recencyFactor = 1 - ((float) referenceDuration / durationSinceLastBeat);
  recencyFactor = constrain(recencyFactor, 0, 1);
  
  //logValue("R", recencyFactor, 5);
  
  return recencyFactor;
}

/**
 * Will update the light intensity bump based on the recency of detected beats.
 */
void updateLightIntensityBasedOnBeats() {
  float intensity = 1 - ((float) durationSinceLastBeat / LIGHT_FADE_OUT_DURATION);
  intensity = constrain(intensity, 0, 1);
  
  if (intensity > lightIntensityValue) {
    lightIntensityBumpValue = intensity;
    lightIntensityBumpTimestamp = millis();
  }
}

/**
 * Will update the light intensity bump based on measured amplitudes.
 */
void updateLightIntensityBasedOnAmplitudes() {
  float intensity;
  if (averageSignal < 1 || currentSignal < 1) {
    intensity = 0;
  } else {
    intensity = (float) (currentSignal - averageSignal) / MAXIMUM_SIGNAL_VALUE;
    intensity *= pow(intensity, 3);
    
    if (intensity < 0.1) {
      intensity = 0;
    } else {
      intensity -= 0.1;
      intensity = pow(1 + intensity, 3) - 1;
      intensity = constrain(intensity, 0, 1);
    }
  }
  
  logValue("I", intensity, 10);
  
  if (intensity > lightIntensityValue) {
    lightIntensityBumpValue = intensity;
    lightIntensityBumpTimestamp = millis();
  }
}

/**
 * Will update the hat lights based on the last light intensity bumps.
 */
void updateLights() {
  long durationSinceLastBump = millis() - lightIntensityBumpTimestamp;
  float fadeFactor = 1 - ((float) durationSinceLastBump / LIGHT_FADE_OUT_DURATION);
  fadeFactor = constrain(fadeFactor, 0, 1);
  
  lightIntensityValue = lightIntensityBumpValue * fadeFactor;
  lightIntensityValue = constrain(lightIntensityValue, 0, 1);
  
  logValue("L", lightIntensityValue, 20);
  
  // scale the intensity to be in range of maximum and minimum
  float scaledLightIntensity = MINIMUM_LIGHT_INTENSITY + (lightIntensityValue * (MAXIMUM_LIGHT_INTENSITY - MINIMUM_LIGHT_INTENSITY));
  
  int pinValue = 255 * scaledLightIntensity;
  int rojoActual = rojo * scaledLightIntensity;
  int verdeActual = verde * scaledLightIntensity;
  int azulActual = azul * scaledLightIntensity;
  pixels.setPixelColor(0, pixels.Color(rojoActual, verdeActual, azulActual));
  pixels.show();
  analogWrite(HAT_LIGHTS_PIN, pinValue);
  
  // also use the builtin LED, for debugging when no lights are connected
  if (scaledLightIntensity > MAXIMUM_LIGHT_INTENSITY - ((MAXIMUM_LIGHT_INTENSITY - MINIMUM_LIGHT_INTENSITY) / 4)) {
    digitalWrite(LED_BUILTIN, HIGH);
  } else {
    digitalWrite(LED_BUILTIN, LOW);
  }
  
  // update the pulse signal
  long durationSincePulse = millis() - lastPulseTimestamp;
  fadeFactor = ((float) durationSincePulse / (LIGHT_PULSE_DURATION * 2));
  if (durationSincePulse >= LIGHT_PULSE_DURATION) {
    fadeFactor = 1 - fadeFactor;
  }
  fadeFactor *= 2;
  fadeFactor = constrain(fadeFactor, 0, 1);
  
  // scale the intensity to be in range of maximum and minimum
  scaledLightIntensity = MINIMUM_LIGHT_INTENSITY + (fadeFactor * (MAXIMUM_LIGHT_INTENSITY - MINIMUM_LIGHT_INTENSITY));
  
  //logValue("P", scaledLightIntensity, 10);
  
  pinValue = 255 * scaledLightIntensity;
  analogWrite(HAT_LIGHTS_PULSE_PIN, pinValue);
  
  if (durationSincePulse >= LIGHT_PULSE_DELAY) {
    lastPulseTimestamp = millis();
  }
}

/**
 * Converts the specified value into an ASCII-art progressbar
 * with the specified length.
 */
String toProgressBar(float value, const int length) {
  int amount = max(0, min(length, value * length));
  String progressBar = "[";
  for (int i = 0; i < amount; i++) {
    progressBar += "=";
  }
  for (int i = 0; i < length - amount; i++) {
    progressBar += " ";
  }
  progressBar += "]";
  return progressBar;
}

void logValue(String name, boolean value) {
  logValue(name, value ? 1.0 : 0.0, 1);
}

void logValue(String name, float value) {
  logValue(name, value, 10);
}

void logValue(String name, float value, int length) {
  Serial.print(" | " + name + ": " + toProgressBar(value, length));
}

Here's the result:


It seems that the first case alwas works (to an extent)

Perhaps I found the problem.
New variables shouldn't be declared inside cases, if there is a declaration inside the case, the case must be formatted as a code block:

case 'v':
          {
          Serial.print("Entering case ");
          Serial.println("v");
          String nVel = lectura.substring(1,7);
          restaIntensidad= nVel.toFloat();
          Serial.print("Nueva velocidad: ");
          Serial.println(restaIntensidad);
          break;
         }

https://en.cppreference.com/w/cpp/language/switch

1 Like

SUCCESS!!
Heres the result:


It appears to be exactly what you said, now every option works like a charm.
Thank you for your effort, I really couldt see anything.