function calling

hi

i am currently doing my project in pulse measurement using arduino yun

my problem is i am compiling my program it will successfully compile but in the serial monitor my sensor reading is not shown

//my main program

#include <pulse-sensor-arduino.h>
int blinkPin = 13; // pin to blink led at each beat
int fadePin = 5; // pin to do fancy classy fading blink at each beat
int fadeRate = 0; // used to fade LED on with PWM on fadePin
void setup(){
pinMode(blinkPin,OUTPUT); // pin that will blink to your heartbeat!
pinMode(fadePin,OUTPUT); // pin that will fade to your heartbeat!
Serial.begin(115200); // we agree to talk fast!
PulseSensor();
}
void loop(){
sendDataToProcessing('P', PulseSensor::Signal); // send Processing the raw Pulse Sensor data
if (PulseSensor::QS == true){ // Quantified Self flag is true when arduino finds a heartbeat
fadeRate = 255; // Set 'fadeRate' Variable to 255 to fade LED with pulse
sendDataToProcessing('B',PulseSensor::BPM); // send heart rate with a 'B' prefix
sendDataToProcessing('Q',PulseSensor::IBI); // send time between beats with a 'Q' prefix
PulseSensor::QS = false; // reset the Quantified Self flag for next time 
}
ledFadeToBeat();
delay(5000); // take a break
}
void ledFadeToBeat(){
fadeRate -= 15; // set LED fade value
fadeRate = constrain(fadeRate,0,255); // keep LED fade value from going into negative numbers!
analogWrite(fadePin,fadeRate); // fade LED
}
void sendDataToProcessing(char symbol, int data ){
Serial.print(symbol); // symbol prefix tells Processing what type of data is coming
Serial.println(data); // the data to send culminating in a carriage return
}

//my cpp program

/*


#include "pulse-sensor-arduino.h"

volatile int rate[10];                        // array to hold last ten IBI values
volatile unsigned long sampleCounter = 0;     // used to determine pulse timing
volatile unsigned long lastBeatTime = 0;      // used to find IBI
volatile int P =512;                          // used to find peak in pulse wave, seeded
volatile int T = 512;                         // used to find trough in pulse wave, seeded
volatile int thresh = 512;                    // used to find instant moment of heart beat, seeded
volatile int amp = 100;                       // used to hold amplitude of pulse waveform, seeded
volatile boolean firstBeat = true;            // used to seed rate array so we startup with reasonable BPM
volatile boolean secondBeat = false;          // used to seed rate array so we startup with reasonable BPM
volatile boolean Pulse = false;               // true when pulse wave is high, false when it's low
volatile int pulsePin;

volatile int PulseSensor::IBI = 600;          // holds the time between beats, must be seeded!
volatile int PulseSensor::BPM;                // used to hold the pulse rate
volatile int PulseSensor::Signal;             // holds the incoming raw data
volatile boolean PulseSensor::QS = false;     // becomes true when Arduino finds a beat

void PulseSensor::begin(int pPin)
{
  pinMode(pulsePin, INPUT);
  pulsePin = pPin;

  // Initializes Timer1 to throw an interrupt every 2ms.
  TCCR1A = 0x00;
  TCCR1B = 0x0C;  // CTC (Compare match mode) and ClockIO/256
  OCR1A = 0x7C;   // 2 ms
  TIMSK1 = 0x02;
  sei();             // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED
}

// THIS IS THE TIMER 1 INTERRUPT SERVICE ROUTINE. 
// Timer 1 makes sure that we take a reading every 2 miliseconds
ISR(TIMER1_COMPA_vect)
{                         // triggered when Timer1 counts to 124
  cli();                                      // disable interrupts while we do this
  PulseSensor::Signal = analogRead(pulsePin);              // read the Pulse Sensor 
  sampleCounter += 2;                         // keep track of the time in ms with this variable
  int N = sampleCounter - lastBeatTime;       // monitor the time since the last beat to avoid noise

  //  find the peak and trough of the pulse wave
  if(PulseSensor::Signal < thresh && N > (PulseSensor::IBI/5)*3){       // avoid dichrotic noise by waiting 3/5 of last IBI
    if (PulseSensor::Signal < T){                        // T is the trough
      T = PulseSensor::Signal;                         // keep track of lowest point in pulse wave 
    }
  }

  if(PulseSensor::Signal > thresh && PulseSensor::Signal > P){          // thresh condition helps avoid noise
    P = PulseSensor::Signal;                             // P is the peak
  }                                        // keep track of highest point in pulse wave

  //  NOW IT'S TIME TO LOOK FOR THE HEART BEAT
  // signal surges up in value every time there is a pulse
  if (N > 250){                                   // avoid high frequency noise
    if ( (PulseSensor::Signal > thresh) && (Pulse == false) && (N > (PulseSensor::IBI/5)*3) )
    {        
      Pulse = true;                               // set the Pulse flag when we think there is a pulse
      PulseSensor::IBI = sampleCounter - lastBeatTime;         // measure time between beats in mS
      lastBeatTime = sampleCounter;               // keep track of time for next pulse

      if(secondBeat){                        // if this is the second beat, if secondBeat == TRUE
        secondBeat = false;                  // clear secondBeat flag
        for(int i=0; i<=9; i++){             // seed the running total to get a realisitic BPM at startup
          rate[i] = PulseSensor::IBI;                      
        }
      }

      if(firstBeat){                         // if it's the first time we found a beat, if firstBeat == TRUE
        firstBeat = false;                   // clear firstBeat flag
        secondBeat = true;                   // set the second beat flag
        sei();                               // enable interrupts again
        return;                              // IBI value is unreliable so discard it
      }   


      // keep a running total of the last 10 IBI values
      word runningTotal = 0;                  // clear the runningTotal variable    

      for(int i=0; i<=8; i++){                // shift data in the rate array
        rate[i] = rate[i+1];                  // and drop the oldest IBI value 
        runningTotal += rate[i];              // add up the 9 oldest IBI values
      }

      rate[9] = PulseSensor::IBI;                          // add the latest IBI to the rate array
      runningTotal += rate[9];                // add the latest IBI to runningTotal
      runningTotal /= 10;                     // average the last 10 IBI values 
      PulseSensor::BPM = 60000/runningTotal;               // how many beats can fit into a minute? that's BPM!
      PulseSensor::QS = true;                              // set Quantified Self flag 
      // QS FLAG IS NOT CLEARED INSIDE THIS ISR
    }                       
  }

  if (PulseSensor::Signal < thresh && Pulse == true){   // when the values are going down, the beat is over
    Pulse = false;                         // reset the Pulse flag so we can do it again
    amp = P - T;                           // get amplitude of the pulse wave
    thresh = amp/2 + T;                    // set thresh at 50% of the amplitude
    P = thresh;                            // reset these for next time
    T = thresh;
  }

  if (N > 2500){                           // if 2.5 seconds go by without a beat
    thresh = 512;                          // set thresh default
    P = 512;                               // set P default
    T = 512;                               // set T default
    lastBeatTime = sampleCounter;          // bring the lastBeatTime up to date        
    firstBeat = true;                      // set these to avoid noise
    secondBeat = false;                    // when we get the heartbeat back
  }

  sei();                                   // enable interrupts when youre done!
} // end isr

//my header file

#ifndef PULSE_SENSOR_ARDUINO_H
#define PULSE_SENSOR_ARDUINO_H

#include "Arduino.h"

class PulseSensor
{
public:
  static void begin(int pulsePin);

  static volatile int BPM;           // used to hold the pulse rate
  static volatile int Signal;        // holds the incoming raw data
  static volatile int IBI;           // holds the time between beats, must be seeded!
  static volatile boolean QS;        // becomes true when Arduoino finds a beat.
};

#endif // PULSE_SENSOR_ARDUINO_H

serial monitor image

It would appear you are getting serial output. It's just that PulseSensor::Signal is always zero, and PulseSensor::QS is always false.

I see that you are never calling PulseSensor::begin(). Without it, nothing is getting set up, so it's pretty easy to guess why those values are never changing.

And what are you trying to do with the PulseSensor() call at the end of setup()? That syntax, where the name of a class is called like a function is reserved for a class constructor, but your class doesn't have one. I don't understand why it even compiles?

I'm guessing you are trying to call the begin() function there, in which case it should be PulseSensor::begin(); not PulseSensor();

thank you shapeShifter

void setup(){ pinMode(blinkPin,OUTPUT); // pin that will blink to your heartbeat! pinMode(fadePin,OUTPUT); // pin that will fade to your heartbeat! Serial.begin(115200); // we agree to talk fast! PulseSensor(); }

you said i am using PulseSensor(); instead of PulseSensor::begin();

hi

i am currently doing my project in pulse measurement using arduino yun

my problem is i am compiling my program it will successfully compile but in the serial monitor my sensor reading is not shown

//my main program

#include <pulse-sensor-arduino.h>
int blinkPin = 13; // pin to blink led at each beat
int fadePin = 5; // pin to do fancy classy fading blink at each beat
int fadeRate = 0; // used to fade LED on with PWM on fadePin
void setup(){
pinMode(blinkPin,OUTPUT); // pin that will blink to your heartbeat!
pinMode(fadePin,OUTPUT); // pin that will fade to your heartbeat!
Serial.begin(115200); // we agree to talk fast!
PulseSensor();
}
void loop(){
sendDataToProcessing('P', PulseSensor::Signal); // send Processing the raw Pulse Sensor data
if (PulseSensor::QS == true){ // Quantified Self flag is true when arduino finds a heartbeat
fadeRate = 255; // Set 'fadeRate' Variable to 255 to fade LED with pulse
sendDataToProcessing('B',PulseSensor::BPM); // send heart rate with a 'B' prefix
sendDataToProcessing('Q',PulseSensor::IBI); // send time between beats with a 'Q' prefix
PulseSensor::QS = false; // reset the Quantified Self flag for next time 
}
ledFadeToBeat();
delay(5000); // take a break
}
void ledFadeToBeat(){
fadeRate -= 15; // set LED fade value
fadeRate = constrain(fadeRate,0,255); // keep LED fade value from going into negative numbers!
analogWrite(fadePin,fadeRate); // fade LED
}
void sendDataToProcessing(char symbol, int data ){
Serial.print(symbol); // symbol prefix tells Processing what type of data is coming
Serial.println(data); // the data to send culminating in a carriage return
}

//my cpp program

#include "pulse-sensor-arduino.h"

volatile int rate[10];                        // array to hold last ten IBI values
volatile unsigned long sampleCounter = 0;     // used to determine pulse timing
volatile unsigned long lastBeatTime = 0;      // used to find IBI
volatile int P =512;                          // used to find peak in pulse wave, seeded
volatile int T = 512;                         // used to find trough in pulse wave, seeded
volatile int thresh = 512;                    // used to find instant moment of heart beat, seeded
volatile int amp = 100;                       // used to hold amplitude of pulse waveform, seeded
volatile boolean firstBeat = true;            // used to seed rate array so we startup with reasonable BPM
volatile boolean secondBeat = false;          // used to seed rate array so we startup with reasonable BPM
volatile boolean Pulse = false;               // true when pulse wave is high, false when it's low
volatile int pulsePin;

volatile int PulseSensor::IBI = 600;          // holds the time between beats, must be seeded!
volatile int PulseSensor::BPM;                // used to hold the pulse rate
volatile int PulseSensor::Signal;             // holds the incoming raw data
volatile boolean PulseSensor::QS = false;     // becomes true when Arduino finds a beat

void PulseSensor::begin(int pPin)
{
  pinMode(pulsePin, INPUT);
  pulsePin = pPin;

  // Initializes Timer1 to throw an interrupt every 2ms.
  TCCR1A = 0x00;
  TCCR1B = 0x0C;  // CTC (Compare match mode) and ClockIO/256
  OCR1A = 0x7C;   // 2 ms
  TIMSK1 = 0x02;
  sei();             // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED
}

// THIS IS THE TIMER 1 INTERRUPT SERVICE ROUTINE. 
// Timer 1 makes sure that we take a reading every 2 miliseconds
ISR(TIMER1_COMPA_vect)
{                         // triggered when Timer1 counts to 124
  cli();                                      // disable interrupts while we do this
  PulseSensor::Signal = analogRead(pulsePin);              // read the Pulse Sensor 
  sampleCounter += 2;                         // keep track of the time in ms with this variable
  int N = sampleCounter - lastBeatTime;       // monitor the time since the last beat to avoid noise

  //  find the peak and trough of the pulse wave
  if(PulseSensor::Signal < thresh && N > (PulseSensor::IBI/5)*3){       // avoid dichrotic noise by waiting 3/5 of last IBI
    if (PulseSensor::Signal < T){                        // T is the trough
      T = PulseSensor::Signal;                         // keep track of lowest point in pulse wave 
    }
  }

  if(PulseSensor::Signal > thresh && PulseSensor::Signal > P){          // thresh condition helps avoid noise
    P = PulseSensor::Signal;                             // P is the peak
  }                                        // keep track of highest point in pulse wave

  //  NOW IT'S TIME TO LOOK FOR THE HEART BEAT
  // signal surges up in value every time there is a pulse
  if (N > 250){                                   // avoid high frequency noise
    if ( (PulseSensor::Signal > thresh) && (Pulse == false) && (N > (PulseSensor::IBI/5)*3) )
    {        
      Pulse = true;                               // set the Pulse flag when we think there is a pulse
      PulseSensor::IBI = sampleCounter - lastBeatTime;         // measure time between beats in mS
      lastBeatTime = sampleCounter;               // keep track of time for next pulse

      if(secondBeat){                        // if this is the second beat, if secondBeat == TRUE
        secondBeat = false;                  // clear secondBeat flag
        for(int i=0; i<=9; i++){             // seed the running total to get a realisitic BPM at startup
          rate[i] = PulseSensor::IBI;                      
        }
      }

      if(firstBeat){                         // if it's the first time we found a beat, if firstBeat == TRUE
        firstBeat = false;                   // clear firstBeat flag
        secondBeat = true;                   // set the second beat flag
        sei();                               // enable interrupts again
        return;                              // IBI value is unreliable so discard it
      }   


      // keep a running total of the last 10 IBI values
      word runningTotal = 0;                  // clear the runningTotal variable    

      for(int i=0; i<=8; i++){                // shift data in the rate array
        rate[i] = rate[i+1];                  // and drop the oldest IBI value 
        runningTotal += rate[i];              // add up the 9 oldest IBI values
      }

      rate[9] = PulseSensor::IBI;                          // add the latest IBI to the rate array
      runningTotal += rate[9];                // add the latest IBI to runningTotal
      runningTotal /= 10;                     // average the last 10 IBI values 
      PulseSensor::BPM = 60000/runningTotal;               // how many beats can fit into a minute? that's BPM!
      PulseSensor::QS = true;                              // set Quantified Self flag 
      // QS FLAG IS NOT CLEARED INSIDE THIS ISR
    }                       
  }

  if (PulseSensor::Signal < thresh && Pulse == true){   // when the values are going down, the beat is over
    Pulse = false;                         // reset the Pulse flag so we can do it again
    amp = P - T;                           // get amplitude of the pulse wave
    thresh = amp/2 + T;                    // set thresh at 50% of the amplitude
    P = thresh;                            // reset these for next time
    T = thresh;
  }

  if (N > 2500){                           // if 2.5 seconds go by without a beat
    thresh = 512;                          // set thresh default
    P = 512;                               // set P default
    T = 512;                               // set T default
    lastBeatTime = sampleCounter;          // bring the lastBeatTime up to date        
    firstBeat = true;                      // set these to avoid noise
    secondBeat = false;                    // when we get the heartbeat back
  }

  sei();                                   // enable interrupts when youre done!
} // end isr

//my header file

#ifndef PULSE_SENSOR_ARDUINO_H
#define PULSE_SENSOR_ARDUINO_H

#include "Arduino.h"

class PulseSensor
{
public:
  static void begin(int pulsePin);

  static volatile int BPM;           // used to hold the pulse rate
  static volatile int Signal;        // holds the incoming raw data
  static volatile int IBI;           // holds the time between beats, must be seeded!
  static volatile boolean QS;        // becomes true when Arduoino finds a beat.
};

#endif // PULSE_SENSOR_ARDUINO_H

void loop(){
sendDataToProcessing('P', PulseSensor::Signal); // send Processing the raw Pulse Sensor data
if (PulseSensor::QS == true){ // Quantified Self flag is true when arduino finds a heartbeat
fadeRate = 255; // Set 'fadeRate' Variable to 255 to fade LED with pulse
sendDataToProcessing('B',PulseSensor::BPM); // send heart rate with a 'B' prefix
sendDataToProcessing('Q',PulseSensor::IBI); // send time between beats with a 'Q' prefix
PulseSensor::QS = false; // reset the Quantified Self flag for next time 
}

The IDE has an auto-format option. I suggest you use it.

function calling

What function? What do you mean by the thread topic?

class PulseSensor
{
public:
  static void begin(int pulsePin);

  static volatile int BPM;           // used to hold the pulse rate
  static volatile int Signal;        // holds the incoming raw data
  static volatile int IBI;           // holds the time between beats, must be seeded!
  static volatile boolean QS;        // becomes true when Arduoino finds a beat.
};

Why make a class with everything in it static? What is the point?

volatile int rate[10];                        // array to hold last ten IBI values
volatile unsigned long sampleCounter = 0;     // used to determine pulse timing
volatile unsigned long lastBeatTime = 0;      // used to find IBI
volatile int P =512;                          // used to find peak in pulse wave, seeded
volatile int T = 512;                         // used to find trough in pulse wave, seeded
volatile int thresh = 512;                    // used to find instant moment of heart beat, seeded
volatile int amp = 100;                       // used to hold amplitude of pulse waveform, seeded
volatile boolean firstBeat = true;            // used to seed rate array so we startup with reasonable BPM
volatile boolean secondBeat = false;          // used to seed rate array so we startup with reasonable BPM
volatile boolean Pulse = false;               // true when pulse wave is high, false when it's low
volatile int pulsePin;

volatile int PulseSensor::IBI = 600;          // holds the time between beats, must be seeded!
volatile int PulseSensor::BPM;                // used to hold the pulse rate
volatile int PulseSensor::Signal;             // holds the incoming raw data
volatile boolean PulseSensor::QS = false;     // becomes true when Arduino finds a beat

That's a lot of volatile variables. :)

STOP CROSS-POSTING.

Threads merged, next time it's a time-out.